

Estimation of ambient air levels of regulated heavy metals by means of Partial Least Squares Regression (PLSR)

Germán Santos Ignacio Fernández-Olmo

Department of Chemical Engineering and Inorganic Chemistry University of Cantabria (Spain) Development of Chemical Processes and Pollutants Control Research Group (DePRO)

May 9th, 2013 Madrid, Spain

Contents

1. Introduction

- 1.1. Environmental regulations
- 1.2. Area of study
- 1.3. Air quality assessment in Cantabria
- 1.4. Aim of this work

2. Development of PLSR models

- 2.1. Why PLSR?
- 2.2. PLSR fundamentals
- 2.3. Input data
- 2.4. Model performance criteria
- 3. Performance of PLSR models
- 4. Comparison of multivariate regression techniques
- 5. Conclusions

1.1. Environmental regulations

- Air Quality Framework Directive^[1]
- Prevent or reduce harmful effects to human health and the environment
 - Ambient air quality objectives
 - Air quality assessment (legal duty)
 - Air quality maintenance/improvement

Pollutant	TV ^a (ng m ⁻³)	UAT⁵	LAT ^b	Directive
Pb	500	60	40	2008/50/EC
As	6	60	40	
Cd	5	60	40	2004/107/EC
Ni	20	70	50	

TV: Target Value; UAT: Upper Assessment Threshold; LAT: Lower Assessment Threshold

 $^{\rm a}$ For the total content in the $\rm PM_{10}$ fraction averaged over a calendar year

^b Percent of the target value

Assessment methods

^[1] European Commission (EC), Off. J. Eur. Communities: Legis., 2008, 152, 1-44

1.2. Area of study

1.2. Area of study

1.3. Air quality assessment in Cantabria

^[2] A. Arruti, I. Fernández-Olmo and A. Irabien, J. Environ. Monit., 2011,13(7), 1991-2000

1.4. Aim of this work

Estimate the annual levels of the EU regulated metals in airborne PM₁₀ in urban areas in the Cantabria Region (Northern Spain)

- Development of statistical models based on Partial Least Squares Regression (PLSR)
- Comparison between the estimated metal levels using PLSR and Multiple Linear Regression (MLR) and Principal Components Regression (PCR), from previous works

2. Development of PLSR models -

2.1.Why PLS?

MLR

PCR

Model a target variable (response) when there are a large number of predictor variables

creates a linear combination of the predictors that best correlates with the response

creates linear combinations (components) of the predictors with large variance, reducing correlations, without using the response values.
 Then uses those combinations in predicting the target variable instead of the original predictors

<u>PLSR</u>

creates new predictor variables, latent variables (LVs), as linear combinations of the original predictors, as PCR does. The difference is on how the components are computed

PCR weights are calculated from the covariance matrix of the property PLSR weights reflect the covariance structure between predictors and

PLSR combines information about the variances of both the predictors and the responses, while also considering the correlations among them

2. Development of PLSR models _____ 2.2. PLSR fundamentals **Predictors** Response Т U X-scores Т U Y-scores Υ Χ **P**′ X-loadings **C'** Y-loadings W' weights **C**′ P' W′ X = T P' + EY = U C' + Y = T C' + F $T = X W^*$ $Y = X W^* C' + F = X B + F$ Figure 2. Matrix structure of PLSR 7

2. Development of PLSR models _

2.4. Model performance criteria

Quality Indicators

Correlation coefficient (1)

$$r = \left[\frac{\sum_{i=1}^{n} (C_{O,i} - \overline{C_{O}})(C_{E,i} - \overline{C_{E}})}{\sqrt{\sigma_{O}\sigma_{E}}}\right]$$

Fractional Bias (0)

$$FB = \frac{\overline{C_0} - \overline{C_E}}{0.5 (\overline{C_0} + \overline{C_E})}$$

Root Mean Square Error (0) $RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (C_{O,i} - C_{E,i})^{2}}$ Normalized Mean Square Error (0) $NMSE = \frac{\overline{(C_{O} - C_{E})^{2}}}{\overline{C_{O}} \overline{C_{E}}}$ Fractional Variance (0) $FV = 2 \frac{\sigma_{O} - \sigma_{E}}{\sigma_{O} - \sigma_{E}}$

Uncertainty according to EU Directives^[a]

 $\mathsf{RME} = \max(|\mathsf{C}_{\mathsf{O},\mathsf{p}}\mathsf{-}\mathsf{C}_{\mathsf{E},\mathsf{p}}|)/\mathsf{C}_{\mathsf{O},\mathsf{p}}$

 $\mathsf{RDE} = |\mathsf{C}_{\mathsf{O},\mathsf{LV}} - \mathsf{C}_{\mathsf{E},\mathsf{LV}}| / \mathsf{LV}$

Relative Maximum Error without timing

Relative Directive Error

^[a] EU Uncertainty requirements for objective estimations: RME and RDE < 100%

3. Performance of PLSR models

Table 2. Performance indexes for the estimations

Motal	Annual mean (ng m ⁻³)		EU und	Performance indexes					
wetar	Observed	Estimated	RME (%)	RDE (%)	r	FB	RMSE	FV	NMSE
CAST									
Pb	8.0	8.0	19	1.5	0.9	0.0	3.2	0.15	0.2
As	0.2	0.2	49	3.9	0.7	0.0	0.1	0.77	0.8
Ni	3.0	3.0	34	22	0.8	0.0	1.7	0.48	0.3
Cd	0.1	0.1	34	3.9	0.8	0.0	0.1	0.64	0.7
REIN									
Pb	11.2	11.2	18	1.0	0.9	0.0	4.2	10	0.1
As	0.3	0.3	55	3.8	0.8	0.0	0.2	0.36	0.2
Ni	2.0	2.0	95	6.9	0.9	0.0	0.7	0.28	0.1
Cd	0.2	0.2	22	10.0	0.9	0.0	0.2	0.22	1.2
SANT									
Pb	6.4	6.4	60	3.8	0.6	0.0	5.7	1.06	0.8
As	0.8	0.8	32	79	0.8	0.0	1.2	0.38	2.1
Ni	0.9	0.9	68	14	0.5	0.0	0.7	1.16	0.6
Cd	0.3	0.3	70	41	0.5	0.0	0.4	1.32	2.8

10

Comparison of multivariate regression techniques

	l Technique	Annual mean (ng m ⁻³)		Performance indexes					EU uncertainty	
Metal		Observed	Estimated	r	FB	RMSE	FV	NMSE	RME (%)	RDE (%)
CAST										
Pb	MLR	8.0 8.0	8.4	0.9	0.0	17.4	0.26	0.1	20	1.5
	PLSR	8.0	8.0	0.9	0.0	3.2	0.15	0.2	19	1.5
As		0.2	0.2	0.0	0.0	0.0	0.05	0.0	40	4.0
	PLSK MI P	0.2	0. <u>2</u> 3.0	0.7	0.0	0.1	0.77	0.8	49	3.9
Ni		3.0	3.0	0.0	0.0	17	0.40	0.3	34	22
	MIR	0.1	0.1	0.8	-0.1	0.1	0.40	0.7	29	32
Cd	PLSR	0.1	0.1	0.8	0.0	0.1	0.64	0.7	34	39
REIN	T LOIN	0.1	011	0.0	0.0		0.04			0.0
	MLR	11.2	11.2	0.9	0.0		r: O .	6-09	16	0.3
Pb	PLSR	11.2	11.2	0.9	0.0	4.2	010	0.1	18	1.0
	MLR	0.3	0.3	0.8	0.0	0.2	0.42	0.3	35	1.8
As	PLSR	0.3	0.3	0.8	J.O	0.2	0.36	0.2	55	3.8
	MLR	2.0	2.0	0.8	0.0	0.8	0.42	0.2		
NI	PLSR	2.0	2.0	0.9	0.0	0.7	0.28	0.1	<10	JO%
04	MLR	0.2	0.2	0.9	-0.2	0.2	0.37	0.8	22	
Ca	PLSR	0.2	0.2	0.9	0.0	0.2	0.22	1.2	22	10.0
SANT										
	MLR	6.4	6.3	0.6	0.0	5.6	1.07	0.8	48	3.2
Pb	PCR	6.4	6.4	0.5	0.0	6.0	1.27	0.9	59	2.1
	PLSR	6.4	6.4	0.6	0.0	5.7	1.06	0.8	60	3.8
	MLR	0.8	0.9	0.8	0 11	4 4	0.45	1.8	33	69
As	PCR	0.8	0.9	0.6	l r	· 0 /.	.08	3.6	67	42
	PLSR	0.8	0.8	0.8		· U.T		2.1 🖌	32	79
	MLR	0.9	0.9	0.5	0.0	0.7	1.24	0.6	59	12
Ni	PCR	0.9	0.9	0.4	0.0	0.7	1.50	0.7	55	12
	PLSR	0.9	0.9	0.5	0.0	0.7	1.16	0.6	68	14
	MLR	0.3	0.2	0.4	0.0	0.4	1.32	2.9	72	42
Cd	PCR	0.3	0.3	0.4	-1.8	4.0	1.82	181	259	151
	PLSR	0.3	0.3	0.5	0.0	0.4	1.32	2.8	70	41

Table 3. Performance indexes for the estimations

11

4. Comparison of multivariate regression techniques

Daily variations

5. Conclusions

Model performance

✓ PLSR and MLR techniques estimates the regulated metals mean concentrations correctly

Uncertainty requirements

✓ PLSR and MLR estimations of the regulated metals fulfill the uncertainty requirements for objective estimations (lower than 100%)

Objective estimation techniques

 Statistical estimation models based on MLR and PLSR could be employed to assess the air quality at the considered urban areas as an alternative to experimental measurements

Further work

- ✓ Application of more powerful estimation tools (e.g. neural networks)
- Development of estimations of non-regulated metals with higher concentration levels on ambient air (e.g. Mn or Zn), which will more strict uncertainty requirements

13

Thank you for your attention!

Department of Chemical Engineering and Inorganic Chemistry University of Cantabria (Spain) Development of Chemical Processes and Pollutants Control Research Group (DePRO)

May 9th, 2013 Madrid, Spain

Department of Chemical Engineering and Inorganic Chemistry

Universidad de Cantabria (SPAIN)

Development of Chemical Processes and Pollutants Control Research Group (DePRO)

Dpt. Ingeniería Química y Química Inorgánica ETSIIyT, Avda. los Castros s/n Santander, Cantabria. SPAIN Tel. +34 942 201597 Fax +34 942 201591

«We know what we have to do to achieve the sustainability,

now it's time to do it »

