DOES ELECTRIC VEHICLE INTRODUCTION IN THE CAR FLEET IMPROVE THE AIR QUALITY?

Enrico Ferrero & Alessia Balanzino Università del Piemonte Orientale, Italy Stefano Alessandrini & Maurizio Riva RSE, Milano, Italy

May 9, 2013

Introduction

The model Field measurements Results Conclusions

Introduction

The model Field measurements Results Conclusions

Introduction

イロン イ団と イヨン イヨン

æ

Introduction

• Among the main pollutant sources in urban areas the traffic can be considered one of the more dangerous.

э

< ∃⇒

Introduction

- Among the main pollutant sources in urban areas the traffic can be considered one of the more dangerous.
- Emissions from vehicles contribute to the photochemical pollution involving ozone and nitrogen oxides.

∃ ⊳

Introduction

- Among the main pollutant sources in urban areas the traffic can be considered one of the more dangerous.
- Emissions from vehicles contribute to the photochemical pollution involving ozone and nitrogen oxides.
- New technologies allow reducing the NOx emission thanks to the electric engines.

Introduction

- Among the main pollutant sources in urban areas the traffic can be considered one of the more dangerous.
- Emissions from vehicles contribute to the photochemical pollution involving ozone and nitrogen oxides.
- New technologies allow reducing the NOx emission thanks to the electric engines.
- For this reason, it is very important to evaluate the degree of pollution reduction related to hypothetical scenarios, which account for the introduction of the electric vehicle in the car fleet.

Chemistry in LSM

Electric Vehicle - Enrico Ferrero et al. Harmo15, Madrid, 2013

イロン イ団と イヨン イヨン

Ξ.

Chemistry in LSM

• We need to estimate the plume secondary pollutants like *NO*₂ or other reactive pollutants for regulatory purposes

< - 17 →

< ∃⇒

э

Chemistry in LSM

- We need to estimate the plume secondary pollutants like *NO*₂ or other reactive pollutants for regulatory purposes
- Estimating short term non-equilibrium concentrations in a plume with chemical reactions

4 E b

Chemistry in LSM

- We need to estimate the plume secondary pollutants like *NO*₂ or other reactive pollutants for regulatory purposes
- Estimating short term non-equilibrium concentrations in a plume with chemical reactions
- The Lagrangian particle model is particularly suitable to simulate the dispersion at the small scale

Chemistry in LSM

- We need to estimate the plume secondary pollutants like *NO*₂ or other reactive pollutants for regulatory purposes
- Estimating short term non-equilibrium concentrations in a plume with chemical reactions
- The Lagrangian particle model is particularly suitable to simulate the dispersion at the small scale
- One critical point: how to consider the segregation in real atmosphere ?

Introduction The model Field measurements

Results

Harmo15, Madrid, 2013

イロン イ団と イヨン イヨン

Conclusions

Electric Vehicle - Enrico Ferrero et al.

Problems:

LSM limits

Problems:

• Simulation of the interaction between plume and background concentration fields

- ∢ ≣ ▶

3 N

< 🗇 🕨

æ

LSM limits

Problems:

- Simulation of the interaction between plume and background concentration fields
- Huge amount of particles is needed to reproduce homogeneous background fields

4 E b

э

LSM limits

Problems:

- Simulation of the interaction between plume and background concentration fields
- Huge amount of particles is needed to reproduce homogeneous background fields
- Computational limit!

- E - N

LSM limits

Problems:

- Simulation of the interaction between plume and background concentration fields
- Huge amount of particles is needed to reproduce homogeneous background fields
- Computational limit!
- One-particle model cannot provide second order of the concentration PDF

∃ >

LSM limits

Problems:

- Simulation of the interaction between plume and background concentration fields
- Huge amount of particles is needed to reproduce homogeneous background fields
- Computational limit!
- One-particle model cannot provide second order of the concentration PDF

∃ >

Theoretical limit!

An hybrid model

The Eulerian scheme is included inside the Lagrangian model as follows:

Chemical reactions (I)

We developed a model able to estimate a secondary pollutant like NO_2 due to the oxidation reaction (the segregation effect is considered):

 $NO + O_3 \longrightarrow NO_2 + O_2$

The model considers the photolysis of NO_2 due to solar radiation:

 $NO_2 + O_2 + h\nu \longrightarrow NO + O_3$

- ₹ € ►

Chemical reactions (II)

For each cell we have:

$$< C_{NO} > = < C_{NO}^{*} > -k\Delta t < C_{NO}^{*}C_{O3}^{*} > +j < C_{NO_{2}}^{*} >$$

where C^* are the concentrations after the turbulent displacement, k the reaction rate and j the photolysis constant and

$$< C_{NO}^* C_{O3}^* > = < C_{NO}^* > < C_{O3}^* > + < c_{NO}^{\prime *} c_{O3}^{\prime *} >$$

 $(c' \Rightarrow$ fluctuations) being $< c'^*_{NO}c'^*_{O3} >$ unknown we look for a parameterization.

Segregation parameterization

Based on the Brown and Bilger (1986) wind tunnel data, we found:

$$\alpha = \frac{< c_{NO}' c_{O3}' >}{< C_{NO} > < C_{O3} >} = -0.71 e^{-0.106 \frac{x}{N_D x_s}}$$

where x is the downwind distance, N_D the Damkhöler number and x_s the stechiometric distance

- x_s is calculated for a line source
- Alessandrini et al, IJEP, 2012 (H14-188), *Evaluation of the segregation effect in the dispersion from a urban highway*, shown that the segregation effect may be not negligibile

Background concentration

How to solve the problem of the background concentration?

- S. Alessandrini, E. Ferrero, G. Belfiore, A Lagrangian dispersion Model with Chemical reaction, Int. J. Environ. and Pollut., 2011 - Vol. 44, No.1/2/3/4, pp. 182 - 189
- E. Ferrero, L. Mortarini, S. Alessandrini, C. Lacagnina, A fluctuating plume model for pollutants dispersion with chemical reactions (Poster) Proc. of 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for regulatory Purposes, Paris June 1-4, 2010
- Alessandrini S. and Ferrero E. (2009). A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. PHYSICA A, ISSN: 0378-4371, 388, 8, 1375-1387
 - S. Alessandrini and E. Ferrero, An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain, 30th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application,18 - 22 May, 2009, San Francisco, USA
- S. Alessandrini and E. Ferrero, A Lagrangian particle model with chemical reactions: application in real atmosphere, Hrvatski Meteoroloski Casopis 43 PART 1 (Croatian Meteorological Journal), 43, 235-239 (Proc. Harmo12 Conference, Cavtat, Croatia, October 6th-9th, 2008)

Background concentration

How to solve the problem of the background concentration?

• Our idea \Rightarrow Alessandrini and Ferrero (2008- 2011)

S. Alessandrini, E. Ferrero, G. Belfiore, A Lagrangian dispersion Model with Chemical reaction, Int. J. Environ. and Pollut., 2011 - Vol. 44, No.1/2/3/4, pp. 182 - 189

E. Ferrero, L. Mortarini, S. Alessandrini, C. Lacagnina, A fluctuating plume model for pollutants dispersion with chemical reactions (Poster) Proc. of 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for regulatory Purposes, Paris June 1-4, 2010

Alessandrini S. and Ferrero E. (2009). A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. PHYSICA A, ISSN: 0378-4371, 388, 8, 1375-1387

S. Alessandrini and E. Ferrero, An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain, 30th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application,18 - 22 May, 2009, San Francisco, USA

S. Alessandrini and E. Ferrero, A Lagrangian particle model with chemical reactions: application in real atmosphere, Hrvatski Meteoroloski Casopis 43 PART 1 (Croatian Meteorological Journal), 43, 235-239 (Proc. Harmo12 Conference, Cavtat, Croatia, October 6th-9th, 2008)

Background concentration

How to solve the problem of the background concentration?

• Our idea \Rightarrow Alessandrini and Ferrero (2008- 2011)

• new scalar $C_{deficit} = C_{background} - C$ deficit of concentration

S. Alessandrini, E. Ferrero, G. Belfiore, A Lagrangian dispersion Model with Chemical reaction, Int. J. Environ. and Pollut., 2011 - Vol. 44, No.1/2/3/4, pp. 182 - 189

E Ferrero, L. Mortarini, S. Alessandrini, C. Lacagnina, A fluctuating plume model for pollutants dispersion with chemical reactions (Poster) Proc. of 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for regulatory Purposes, Paris June 1-4, 2010

Alessandrini S. and Ferrero E. (2009). A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. PHYSICA A, ISSN: 0378-4371, 388, 8, 1375-1387

S. Alessandrini and E. Ferrero, An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain, 30th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application,18 - 22 May, 2009, San Francisco, USA

S. Alessandrini and E. Ferrero, A Lagrangian particle model with chemical reactions: application in real atmosphere, Hrvatski Meteoroloski Casopis 43 PART 1 (Croatian Meteorological Journal), 43, 235-239 (Proc. Harmo12 Conference, Cavtat, Croatia, October 6th-9th, 2008)

Background concentration

How to solve the problem of the background concentration?

• Our idea \Rightarrow Alessandrini and Ferrero (2008- 2011)

- new scalar $C_{deficit} = C_{background} C$ deficit of concentration
- C_{def} is carried by the particles of the plume

S. Alessandrini, E. Ferrero, G. Belfiore, A Lagrangian dispersion Model with Chemical reaction, Int. J. Environ. and Pollut., 2011 - Vol. 44, No.1/2/3/4, pp. 182 - 189

E. Ferrero, L. Mortarini, S. Alessandrini, C. Lacagnina, A fluctuating plume model for pollutants dispersion with chemical reactions (Poster) Proc. of 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for regulatory Purposes, Paris June 1-4, 2010

Alessandrini S. and Ferrero E. (2009). A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. PHYSICA A, ISSN: 0378-4371, 388, 8, 1375-1387

S. Alessandrini and E. Ferrero, An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain, 30th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application,18 - 22 May, 2009, San Francisco, USA

S. Alessandrini and E. Ferrero, A Lagrangian particle model with chemical reactions: application in real atmosphere, Hrvatski Meteoroloski Casopis 43 PART 1 (Croatian Meteorological Journal), 43, 235-239 (Proc. Harmo12 Conference, Cavtat, Croatia, October 6th-9th, 2008)

Background concentration

How to solve the problem of the background concentration?

- Our idea \Rightarrow Alessandrini and Ferrero (2008- 2011)
- new scalar $C_{deficit} = C_{background} C$ deficit of concentration
- C_{def} is carried by the particles of the plume
- Concentration C in the plume is calculated as the difference between $C_{background}$ and $C_{deficit}$
- S. Alessandrini, E. Ferrero, G. Belfiore, A Lagrangian dispersion Model with Chemical reaction, Int. J. Environ. and Pollut., 2011
 Vol. 44, No.1/2/3/4, pp. 182 189
- E Ferrero, L. Mortarini, S. Alessandrini, C. Lacagnina, A fluctuating plume model for pollutants dispersion with chemical reactions (Poster) Proc. of 13th International Conference on Harmonisation within Atmospheric Dispersion Modelling for regulatory Purposes, Paris June 1-4, 2010
- Alessandrini S. and Ferrero E. (2009). A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence. PHYSICA A, ISSN: 0378-4371, 388, 8, 1375-1387
- S. Alessandrini and E. Ferrero, An application of a Lagrangian particle model with chemical reactions to power plant pollution dispersion in complex terrain, 30th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application,18 - 22 May, 2009, San Francisco, USA
- S. Alessandrini and E. Ferrero, A Lagrangian particle model with chemical reactions: application in real atmosphere, Hrvatski Meteoroloski Casopis 43 PART 1 (Croatian Meteorological Journal), 43, 235-239 (Proc. Harmo12 Conference, Cavtat, Croatia, October 6th-9th, 2008)

RSE Experimental campaign (I)

イロン イ団と イヨン イヨン

æ

RSE Experimental campaign (I)

• During the period 15 December 2010-25 January 2011 were collected

< 🗇 🕨

< ∃ →

э

RSE Experimental campaign (I)

- During the period 15 December 2010-25 January 2011 were collected
- Hourly average concentrations of NO, NO_2 and O_3

< - 17 →

4 E b

э

RSE Experimental campaign (I)

- During the period 15 December 2010-25 January 2011 were collected
- Hourly average concentrations of NO, NO₂ and O₃
- Meteorological measurements of wind speed and direction and solar radiation

4 E b

RSE Experimental campaign (I)

- During the period 15 December 2010-25 January 2011 were collected
- Hourly average concentrations of NO, NO_2 and O_3
- Meteorological measurements of wind speed and direction and solar radiation
- The air quality measurements were performed within the area where is located the headquarters of RSE at about 400*m* from the east highway of Milan

RSE Experimental campaign (I)

- During the period 15 December 2010-25 January 2011 were collected
- Hourly average concentrations of NO, NO_2 and O_3
- Meteorological measurements of wind speed and direction and solar radiation
- The air quality measurements were performed within the area where is located the headquarters of RSE at about 400*m* from the east highway of Milan
- Lambro and Limito quality stations concentration measurements, carried out by ARPA (Regional Environment Protection Agency) Lombardia, were taken into consideration

RSE Experimental campaign (I)

- During the period 15 December 2010-25 January 2011 were collected
- Hourly average concentrations of NO, NO_2 and O_3
- Meteorological measurements of wind speed and direction and solar radiation
- The air quality measurements were performed within the area where is located the headquarters of RSE at about 400*m* from the east highway of Milan
- Lambro and Limito quality stations concentration measurements, carried out by ARPA (Regional Environment Protection Agency) Lombardia, were taken into consideration
- They are respectively located at about 600*m* and 5000*m* from the highway

- ∢ ≣ ▶

- ∢ ⊒ ▶

RSE Experimental campaign (II)

RSE Experimental campaign (III)

э

-∢ ≣ ▶

< 🗇 🕨

- - E - E

Emission trend from the highway

The traffic flows for the period, required for estimating the emission, were determined from movies recorded by a webcam

Figure: Emission trend ($\mu g h^{-1} m^{-1}$)

Emission trend from the highway

The traffic flows for the period, required for estimating the emission, were determined from movies recorded by a webcam

Figure: Emission trend ($\mu g h^{-1} m^{-1}$)

Present scenario (NEV), a car fleet without electric vehicle

Emission trend from the highway

The traffic flows for the period, required for estimating the emission, were determined from movies recorded by a webcam

Figure: Emission trend ($\mu g h^{-1} m^{-1}$)

- Present scenario (NEV), a car fleet without electric vehicle
- Future scenario (EV) in which an introduction of 25% of electric vehicle in the light vehicle fleet

Emission trend from the highway

The traffic flows for the period, required for estimating the emission, were determined from movies recorded by a webcam

Figure: Emission trend ($\mu g h^{-1} m^{-1}$)

- Present scenario (NEV), a car fleet without electric vehicle
- Future scenario (EV) in which an introduction of 25% of electric vehicle in the light vehicle fleet
- This brought an emission reduction to about 8%, 10% and 8% for NO, NO₂ e NO_x respectively

Meteorological input

イロン イ団と イヨン イヨン

æ

Meteorological input

The meteorological input to the dispersion model was provided by RAMS60

< 🗇 🕨

< ∃ →

Meteorological input

- The meteorological input to the dispersion model was provided by RAMS60
- Initial and boundary conditions from large-scale analysis of the European Centrum for Medium range Weather Forecast (ECMWF).

Meteorological input

- The meteorological input to the dispersion model was provided by RAMS60
- Initial and boundary conditions from large-scale analysis of the European Centrum for Medium range Weather Forecast (ECMWF).
- Furthermore the local measurements were assimilated into the model.

Meteorological input

- The meteorological input to the dispersion model was provided by RAMS60
- Initial and boundary conditions from large-scale analysis of the European Centrum for Medium range Weather Forecast (ECMWF).
- Furthermore the local measurements were assimilated into the model.
- Survival and Second Action and Second Action 2.5

NO concentration differences between NEV and EV scenarios at the Lambro (PL) and RSE stations

Figure: top: absolute difference, bottom: relative difference

Electric Vehicle - Enrico Ferrero et al. Harmo15, Madrid, 2013

NO_2 concentration differences between NEV and EV scenarios at the Lambro (PL) and RSE stations

Figure: top: absolute difference, bottom: relative difference

э

Quantifying the pollution reduction

Electric Vehicle - Enrico Ferrero et al. Harmo15, Madrid, 2013

- ▲ @ ▶ - ▲ ⊇ ▶

- ∢ ≣ ▶

æ

Quantifying the pollution reduction

• NO: except for a few episodes the differences do not exceed the value of about $2\mu g/m^3$ and the relative difference is below the 2%

Quantifying the pollution reduction

- NO: except for a few episodes the differences do not exceed the value of about $2\mu g/m^3$ and the relative difference is below the 2%
- NO_2 : differences are small, generally below $0.5 \mu g/m^3$ and the 1% for the relative one

Quantifying the pollution reduction

- NO: except for a few episodes the differences do not exceed the value of about $2\mu g/m^3$ and the relative difference is below the 2%
- NO_2 : differences are small, generally below $0.5 \mu g/m^3$ and the 1% for the relative one
- High background concentrations make the additional contribution of the highway evident only in a few situations, when the meteorological conditions are favourable for the dispersion from the highway to prevail respect to other diffuse sources

Statistical analysis of the difference between the two scenarios

	NOX	NO2	NO
NMSE (RSE)	0.017	0.017	0.018
NMSE (PL)	0.022	0.023	0.022
FB (RSE)	-0.022	-0.022	-0.021
FB (PL)	-0.021	-0.022	-0.021

The difference between the two scenarios are very small, even including the episodes which show peaks in the difference trend, and comparable for the two stations.

Conclusions

- The Lagrangian Stochastic Chemical/Dispersion Model
 - Background concentrations are simulated as "deficit"
 - Segregation is parameterized
- The effect of the EV introduction is limited to a mean concentration decrease of less than 1% for NO₂, and of about 2% for NO (400-600 m from the highway)
- To achieve further improvements on air quality, may be not sufficient to limit the emissions of light transport vehicles, but it is necessary to reduce also emissions from commercial transport