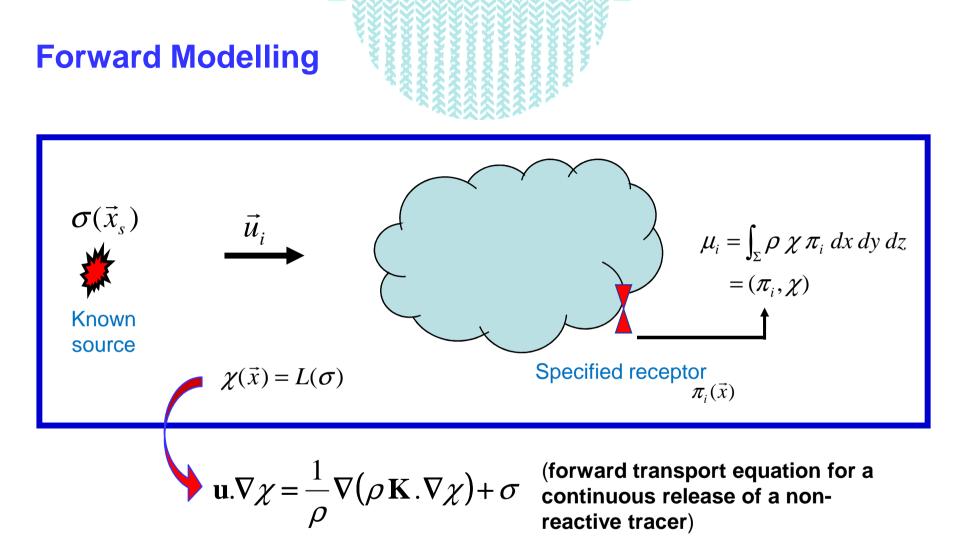


CFD Simulation of inverse plumes for identifying a stationary point source in low wind stable conditions

Amir Ali Feiz, Emerson Barbosa, Sarvesh Kumar Singh, Mohamed Sellam, Grégory Turbelin, Pierre Ngae, Hambaliou Baldé, Amer Chpoun

*http://lmee.univ-evry.fr

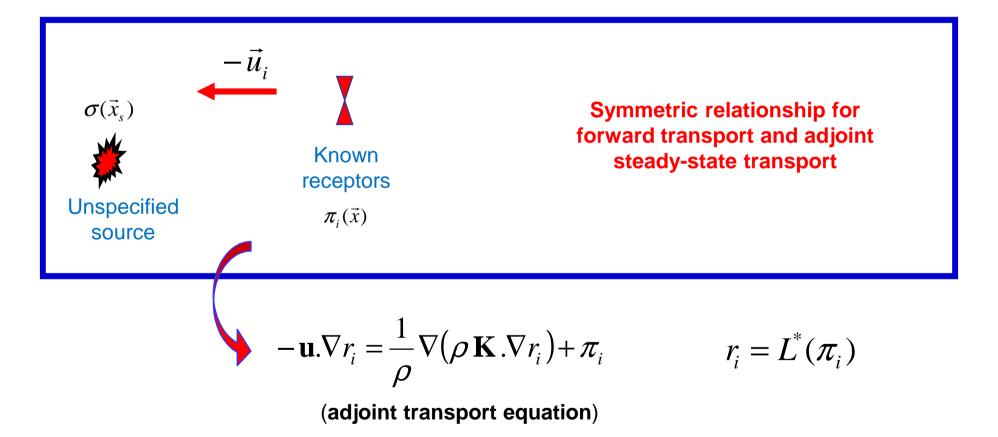
Introduction


- In low-wind stable conditions,
- ✓ plume meandering is effective
- \checkmark diffusion of pollutant is irregular and indefinite

 \checkmark the turbulence and dispersion characteristics of the lower atmosphere is not properly defined

✓ the observed concentration distribution is generally multi-peaked and non-Gaussian

CFD Eulerian/Analytical models are used to simulate the **inverse plumes** for identifying a stationary point source in low wind stable conditions


Problem: For a given source distribution, determine the concentration at an arbitrary receptor location

Backward Modelling (1)

addressed with adjoint of the dispersion models

15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Madrid, May 6-9, 2013

4

Backward Modelling (2)

Since measurements are made at point locations, they are associated with sampling function defined by Dirac notation

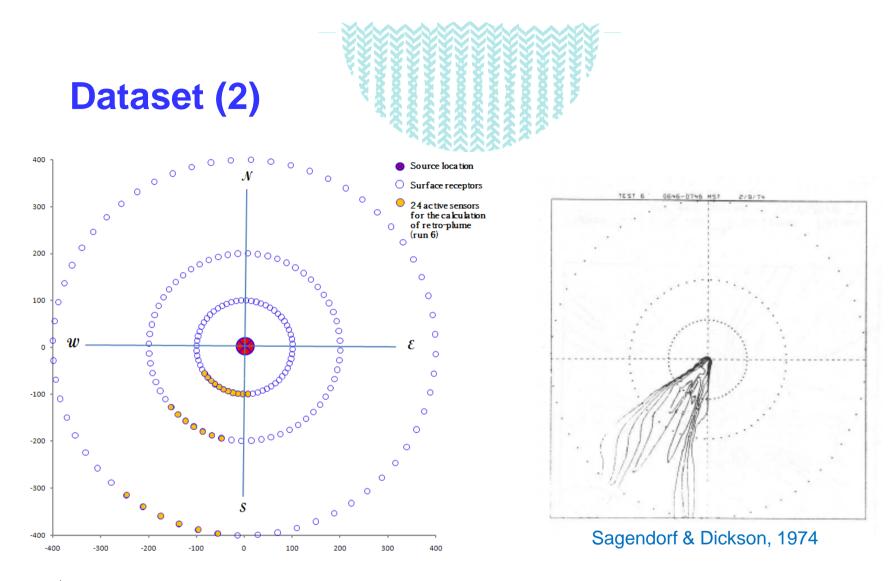
$$\begin{split} \mu_i &= \int_{\Sigma} \rho \ \chi \ \pi_i \ dx \ dy \ dz & \text{integrated mixing ratio at receptor}\\ &= (\pi_i, \chi) = (\pi_i, L(\sigma)) = (L^*(\pi_i), \sigma) \\ &= (r_i, \sigma) \\ &= \int_{\Sigma} \rho \ \sigma \ r_i \ dx \ dy \ dz & \text{r is simulated by CFD model} \end{split}$$

In general, any source estimation technique is driven by simulation of retroplume

Dataset (1)

Idaho Falls dataset (Sagendorf & Dickson, 1974), near Idaho National Engineering Laboratory (INEL), USA

• <u>Release type</u>: Open-area, continuous release, release height for all experiments was 1.5 m


• <u>Dispersion environment</u>: Relatively flat area, stable inversion conditions

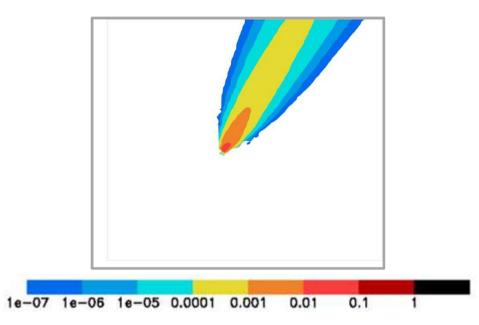
<u>Time study conducted</u>: Winter/Spring 1974 ,
11 days of experiments, each experiment
1 hour SF6 releases, all in stable conditions

• <u>Sampling network</u>: Samplers every 6 degrees at distances of 100 m, 200 m, 400 m at height of 0.76 m

• <u>Meteorological data</u>: Ws, Wd and Temp. at 1, 2, 4, 8, 16, 32, and 61 m; Range of Ws: 0.75-1.92 m/s

Experimental observations are taken for a single trial (**run-6**), which corresponds to a large extent of concentration meandering

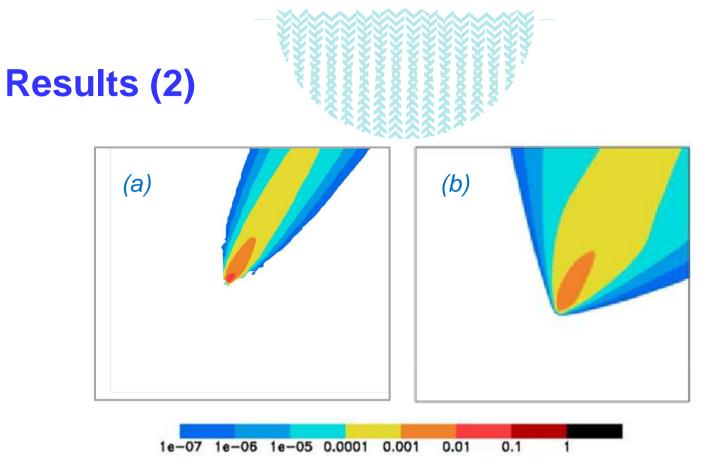
Results


✓ Dispersion of inverse plumes of passive tracer SF6 from the receptors is given by CFD dispersion model, **PANEPR-Retro** (Fluidyn[™])

✓ The inverse plumes are defined as solutions of the adjoint model of dispersion

 ✓ PANEPR compute the concentration at all active receptors (run 6 of Idaho Falls experiments) assuming:

the intensity of release as unity
 the concentration in backward mode by simply changing the wind direction by 180°


Results (1)

PANEPR simulation of inverse plume for receptor 1 in run-6 of Idaho Falls dispersion experiment. Predicted concentration is shown in terms of mass fraction of SF6 ✓ Retro-plumes distribution is almost identical whith respect to each receptor

✓ Max conc. is at the receptors, in fact due to Dirac notation, retro-plume at receptor is almost singular

✓ The concentration is dispersed mainly along wind direction

✓ This is also compared with retro-plumes obtained from an analytical model (Sharan et al., 1996) with coupled plume-segment approach with Luhar (2011) dispersion parameterization (made available by Singh)

A comparison of inverse plumes for receptor 1 using (a) 3D CFD model (PANEPR), (b) 3D analytical model along plane of release height above the ground

✓ An inversion technique based on a theory called « Renormilized data assimilation » is used in order to reconstruct the point emission source location \rightarrow will be presented in next session of Harmo-15 (H15-58)

Comments

Analysis of models results provided clues for understanding of ...

with PANEPR-Retro, the source was poorly estimated approx. 70m away from true source position

with analytical model, the source was still predicted better, 30m away from true release

even, a severe under-prediction (factor of 20) of source strength is observed with both the models

this refers that in actual the retro-plume are still over-predicted

with sensitivity study, this uncertainity is resolved to some extent by accounting the effective release height and receptor's height

still it requires a lot attention to improve dispersion simulation in low wind conditions

Thank you for your attention!

Contact: amirali.feiz@univ-evry.fr

http://lmee.univ-evry.fr