

Myair Toolkit for Model Evaluation

Amy Stidworthy¹, David Carruthers¹, Jenny Stocker¹, Sam

Royston¹, Dimitris Balis², Eleni Katragkou², Jaakko Kukkonen³

¹Cambridge Environmental Research Consultants (CERC) ²Aristotle University of Thessaloniki (AUTH) ³Finnish Meteorological Institute (FMI)

15th International Conference on Harmonisation within Atmospheric Dispersion

Modelling for Regulatory Purposes

Madrid, Spain 6 – 9 May 2013

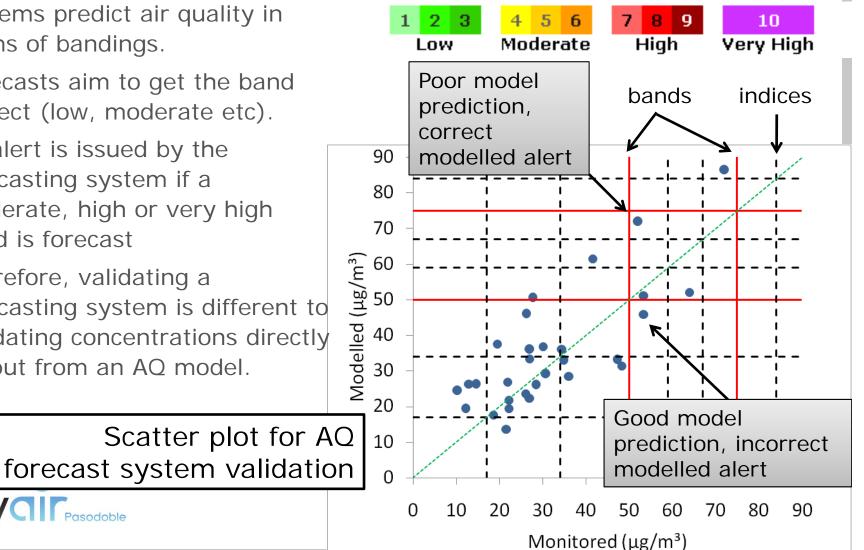
Summary

- Background
- Existing tools and methodologies
- Myair Toolkit capabilities
- Practicalities
- Summary

Background PASODOBLE project

 PASODOBLE is the Copernicus (GMES) downstream service project, producing localscale air quality services for Europe under

English


the name Username Follow @Myair-Pasodoble on Twitter Local for package Objectives Products & Airsheds User Interface Quality Documents and Home evaluate Services Results forecasts Products & Services Health community support services **Evaluat** More details on the Products and Services can be viewed using the links in the menu on the Public forecasting and left. assessment Products Service Service European region / Service Compliance monitoring Line city / cities provider* support services covereu Methodology and All CERC Toolkit for local forecast Local forecast model Local forecast toolkit for local model evaluation evaluation model forecast model evaluation evaluation support Tools for pre-processing of Tools for All AUTH pre-processing of surface and satellite data surface and satellite data that can be applied across Europe Products Service Service European region Service Line / citý / citieš provider*

Background Why AQ forecast models need special tools

- Air quality (AQ) forecasting systems predict air quality in terms of bandings.
- Forecasts aim to get the band correct (low, moderate etc).
- An alert is issued by the forecasting system if a moderate, high or very high band is forecast
- Therefore, validating a forecasting system is different to validating concentrations directly output from an AQ model.

Pasodoble

Daily Air Quality Index

Background Development procedure

- The Myair Toolkit validates air quality model output, focussing on requirements for standardised evaluation of local air quality forecast models.
- The Toolkit was designed following an extensive review (2010-11) of the state-of-the-art in air quality model evaluation.
- Toolkit builds on existing tools and initiatives.

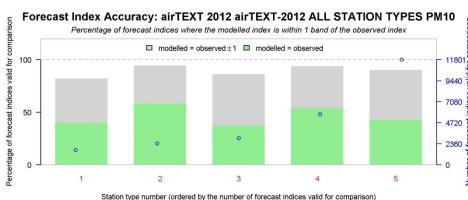
Existing tools and methodologies

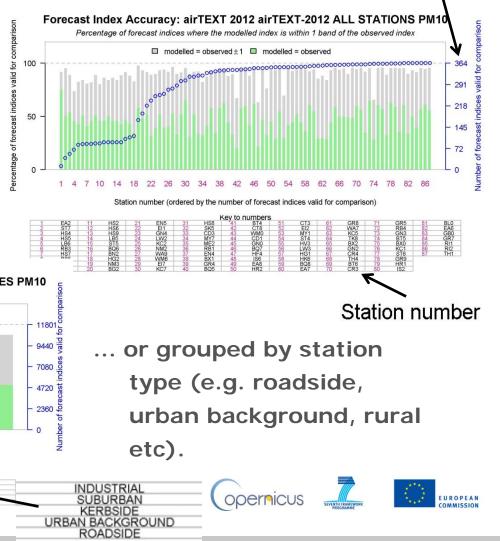
- AQ model validation tools and methodologies:
 - Model Validation Kit
 - ASTM model evaluation methodology
 - FAIRMODE Delta tool
- Meteorological forecasting models:
 - Event-based statistics used at ECMWF for validating the accuracy of Numerical Weather Predictions can be used to validate AQ forecasting systems.
- openair data analysis tools:
 - UK project for the air pollution community
 - Free, open-source, innovative data analysis tools.

Myair Toolkit capabilities What can Myair Toolkit do?

- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation

Myair Toolkit capabilities What can Myair Toolkit do?


- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation


Look at the percentage of forecast indices within one of observed (should be close to 100%) for each pollutant, grouped by station...

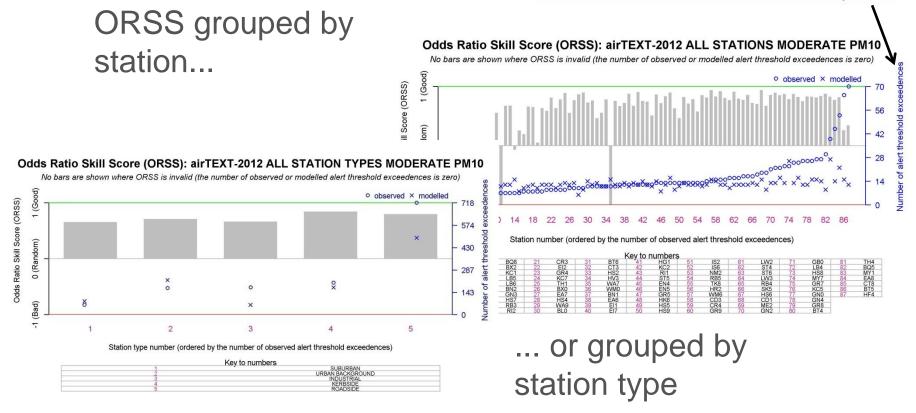
- \square modelled = observed ± 1
- modelled = observed

Key to numbers

Number of forecast indices valid for comparison

Look at model's skill at predicting alert threshold exceedences (i.e. pollution episodes) in different ways:

		Alert modelled?				
		Yes	No			
Alert	Yes	а	b			
observed?	Νο	С	d			

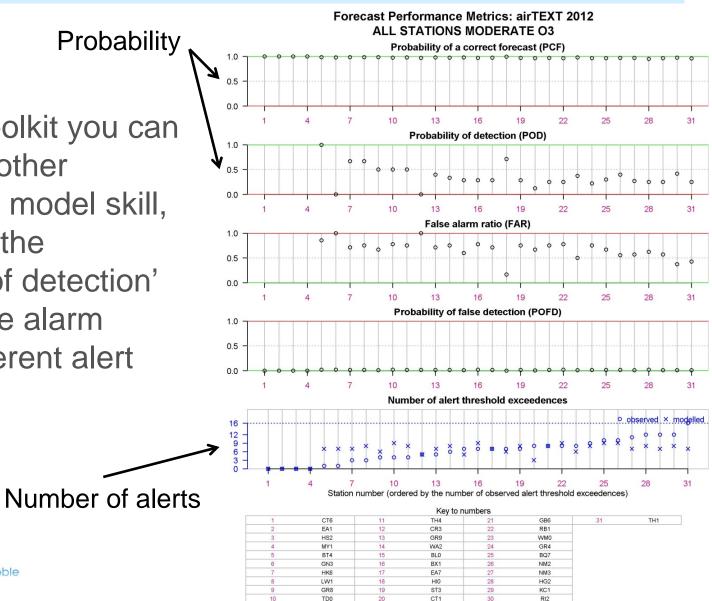

a, b, c and d are counts of the number of days where alerts were or were not modelled and were or were not observed

OddsRatioSkillScore(ORSS) =
$$\frac{ad-bc}{ad+bc}$$

Perfect score: b=c=0ORSS=1 ORSS gives equal weighting to Good score: ad>bc ORSS>0 correct non-prediction and to Bad score: ORSS<0 bc>ad correct prediction ORSS=-1 Fail score: a=d=0 opernicus

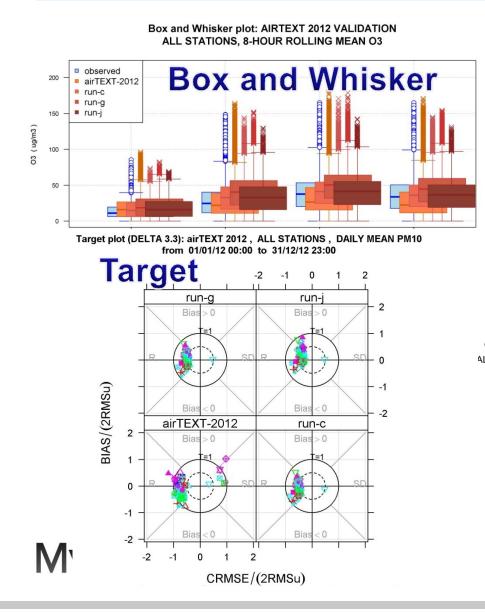
Pasodoble

Number of forecast indices valid for comparison

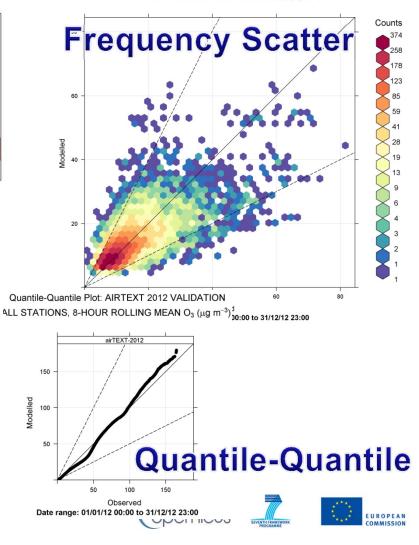


ORSS is a good measure if a lot of episodes are measured, but note that it's easy to get a good score if there are few episodes compared to the number of forecasts because d will be high

Using the Toolkit you can also look at other measures of model skill, for example the 'probability of detection' and the 'false alarm ratio' for different alert thresholds...


Myair Toolkit capabilities What can Myair Toolkit do?

- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation



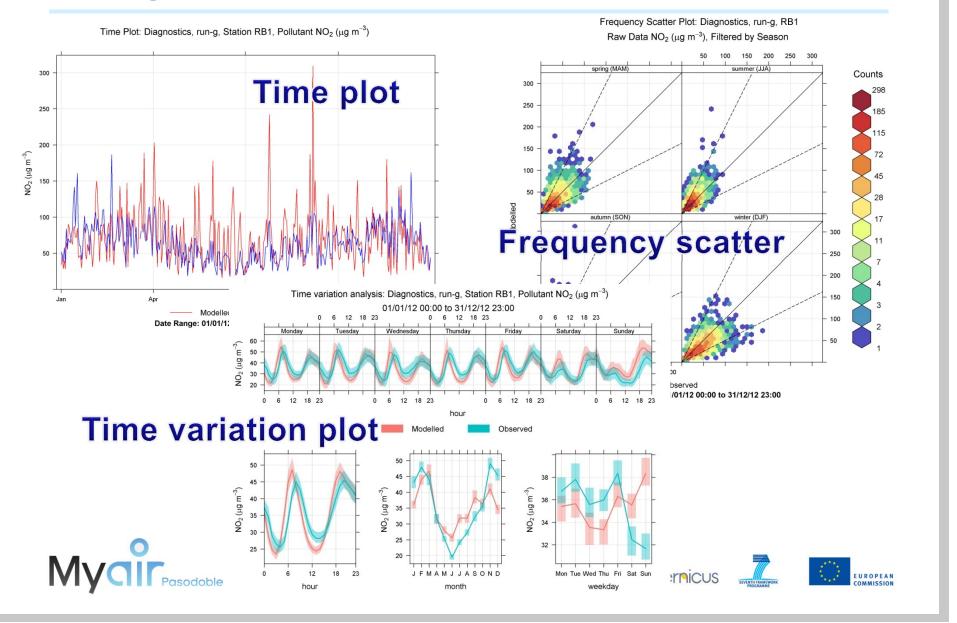
Myair Toolkit capabilities Assess your model's concentration predictions

Frequency Scatter Plot: AIRTEXT 2012 VALIDATION ALL STATIONS, DAILY MEAN PM_{2.5} (µg m⁻³)

Myair Toolkit capabilities Assess your model's concentration predictions

Statistical output includes standard results such as mean, bias, standard deviation and more (this table is an extract from the User Guide)

Number of values Mean Standard Deviation	$1/n \sum C$
	$1/n \sum C$
Standard Deviation	
Standard Deviation	
	$\sqrt{\frac{1}{n}\sum(C-\overline{C})^2}$
Mean Bias	$\overline{(C_p - C_o)}$
Normalised Mean-Square-Error	$\overline{\left(C_p-C_o\right)^2}/\overline{C_oC_p}$
Pearson's Correlation Coefficient	$\operatorname{cov}(C_p, C_o)/\sigma_{C_p}\sigma_{C_o}$
Factor of 2	Fraction of data where $0.5 \le C_p/C_o \le 2$ (when $C_o = 0$, $C_p/C_o \rightarrow \infty$ and the data pair is not counted)
Fractional Bias	$(\overline{C_p} - \overline{C_o})/0.5(\overline{C_o} + \overline{C_p})$
Fractional Standard Deviation	$\left(\sigma_{C_p} - \sigma_{C_o}\right)/0.5\left(\sigma_{C_o} + \sigma_{C_p}\right)$
	nax C
Maximum	
Robust highest	$\chi(n) + (\chi - \chi(n)) \ln\left(\frac{3n-1}{2}\right),$
U	where n is the number of values used to
	tharacterise the upper end of the concentration distribution, χ is the average
	of the $n-1$ largest values, and $\chi(n)$ is the average n^{th} largest value; n is taken to be 26.
	Normalised Mean-Square-Error Pearson's Correlation Coefficient Factor of 2 Fractional Bias


Myair Toolkit capabilities What can the Myair Toolkit do?

- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation

Myair Toolkit capabilities Investigate model performance at individual stations

Myair Toolkit capabilities What can the Myair Toolkit do?

- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation

Myair Toolkit capabilities Import gridded and point modelled data formats

- Supported modelled data formats:
 - Gridded netCDF
 - AIRSHEDS
 - MACC Ensemble
 - CMAQ
 - Point data
 - ADMS PST
 - Generic CSV

2. Modelled data			
Modelled data label:	airTEXT-2012]	
Select modelled data format:			
⊙ netCDF	Choose format:	AIRSHEDS 💽	
	💽 Select file:	AIRSHEDS MACC Ensemble	Browse
	◯ Select directory:	CMAQ Click browse to open rile dialog	Browse
O ADMS PST	 Select file; 	Click "Browse" to open file dialog	Browse
	◯ Select directory:	Click "Browse" to open file dialog	Browse
◯ CSV	 Select file: 	Click "Browse" to open file dialog	Browse
	◯ Select directory:	Click "Browse" to open file dialog	Browse
	Separator:	comma 💌	
	Missing data indicator:		

- The Toolkit interpolates gridded data to station locations
- You can import a single file or a whole directory of files

Myair Toolkit capabilities What can the Myair Toolkit do?

- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation

Myair Toolkit capabilities Download and import monitoring data

- In situ observed data for 2 UK networks can be downloaded and imported automatically (London KCL and UK AURN)
- Observed data in a generic CSV format can be imported from a single file or directory of files

	2. Observed data			
	⊙ CSV	 Select file: 	Click "Browse" to open file dialog	Browse
		O Select directory:	Click "Browse" to open file dialog	Browse
		Separator:	comma 💌	
		Missing data indicator:]
	🔘 London KCL			
	O UK Automatic Urban and Rural Network (AURN))		
Mya	Pasodoble			

Myair Toolkit capabilities What can the Myair Toolkit do?

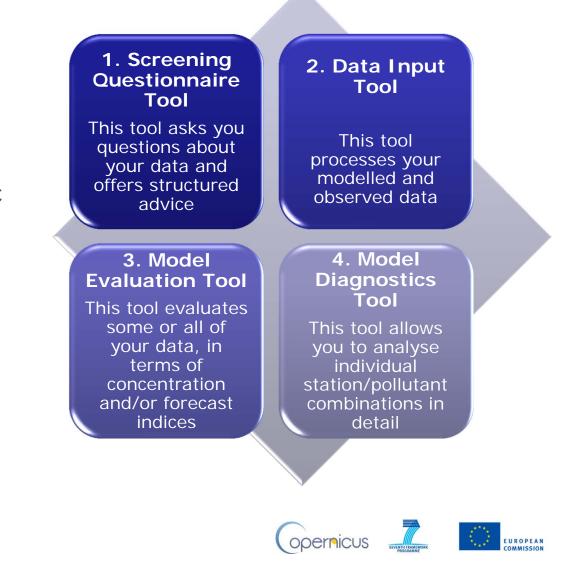
- Assess your model's forecast skill
- Assess your model's concentration predictions
- Help you investigate model performance at individual stations using openair graphs
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Run in batch mode, for easy automation

Myair Toolkit capabilities Save graphical and statistical output

- Saves graphs as image files (JPG, PNG) or PDFs for importing into documents
- Saves data (raw, processed and statistics) in CSV files, to provide an audit trail and for further analysis

	irTEXT 2012_Validation_forecast_alert_stats.csv						_ = ×			
		А	В	С	D	E	F	G	Н	I
	1	pollutant	type	model	alert.name	num.obs.alerts	а	b	с	d
	2	pm10	suburban	airTEXT-2012	moderate	64	9	77	55	2266
One of the	3	pm10	suburban	airTEXT-2012	high	5	5	30	0	2372
	4	pm10	urban background	airTEXT-2012	moderate	171	30	192	141	5328
CSV files	5	pm10	urban background	airTEXT-2012	high	12	11	80	1	5599
	6	pm10	kerbside	airTEXT-2012	moderate	205	66	109	139	2681
output by	7	pm10	kerbside	airTEXT-2012	high	38	22	36	16	2921
the Toolkit	8	pm10	industrial	airTEXT-2012	moderate	175	22	41	153	1425
the looikit	9	pm10	industrial	airTEXT-2012	high	32	10	15	22	1594
	10	pm10	roadside	airTEXT-2012	moderate	718	157	337	561	10746
	11	pm10	roadside	airTEXT-2012	high	88	53	143	35	11570
	14 4	AirTEXT 20)12_Validation_forecas 🥂	7		1	Ш			► 1

Myair Toolkit capabilities What can the Myair Toolkit do?


- Assess your model's forecast skill
- Assess your model's concentration predictions
- Easily import a wide range of gridded and point modelled data formats
- Download and import in situ monitoring data for the UK (also CSV files)
- Save graphical and statistical output to your computer
- Help you investigate model performance at individual stations using openair graphs
- Run in batch mode, for easy automation

Batch mode allows easy integration of model evaluation into automatic processes, and also easy re-generation of results with new data

Practicalities What do you get?

- 4 tools
- Runs on most
 commonly-used
 platforms, including
 Windows, Linux, Mac
- Requires you to download and install some free software, which only takes a few minutes
- Comprehensive User
 Guide included
 MyCIC Pasodoble

Summary

- The Myair Toolkit for Model Evaluation is a powerful new tool for the evaluation of air quality forecasting models
- The Toolkit was developed building on existing tools and methodologies
- You can download the free toolkit from <u>http://www.cerc.co.uk/environmental-</u> <u>software/myair-toolkit.html</u>

Acknowledgements

The authors wish to thank:

 PASODOBLE project partners, in particular the users in the 'Local forecast model evaluation support' work package and those involved in evaluating the AIRSHEDS products, for their valuable feedback during development and demonstration of the Myair Toolkit.

 EU FP7 programme for funding the 3-year PASODOBLE project (completed April 2013)

