

HARMO 15 - 15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Development and Implementation of an Air Quality Integrated Assessment Model for the Iberian Peninsula

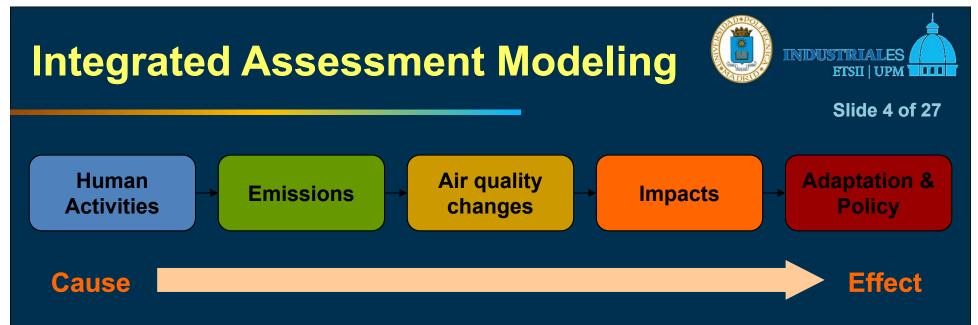
M. Vedrenne, R. Borge, J. Lumbreras, D. de la Paz & M.E. Rodríguez

Laboratory of Environmental Modeling. Technical University of Madrid (UPM

May 9th, 2013 Madrid, Spain

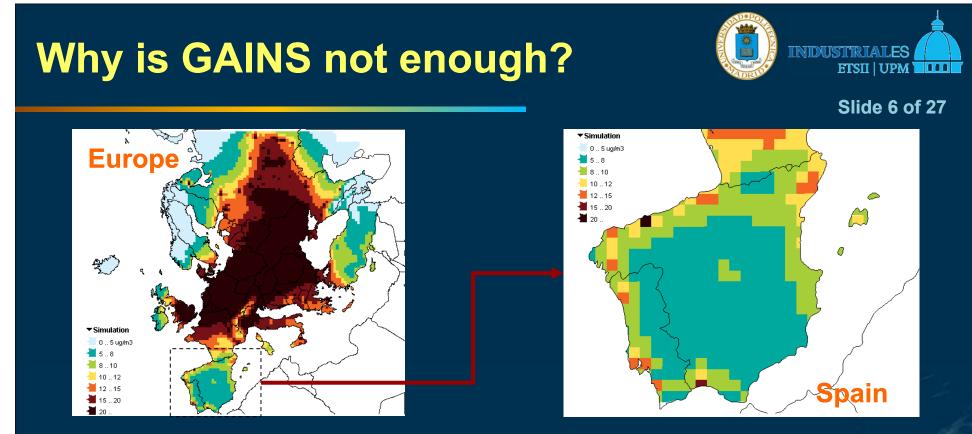
Slide 2 of 27

1. Introduction.


- 2. AERIS Atmospheric Evaluation and Research Integrated system for Spain.
- 3. Model testing and evaluation.
- 4. Results.
- 5. Conclusions.
- 6. References.

Slide 3 of 27

Introduction



 Provides a holistic description of environmental problems under a policy-driven framework.

• Methodology for gaining insight about the complex interactions between phenomena.

 Intended to satisfy the needs of a wide range of stakeholders. Assuming CPU time for quick questions??

Broader scope – description of phenomena is simplified

- European scale poorly catches local level phenomena.
- Not designed to support national policy making.
- Relies on an emission inventory with a limited detail.
- Spain does not have an air quality IAM so far.

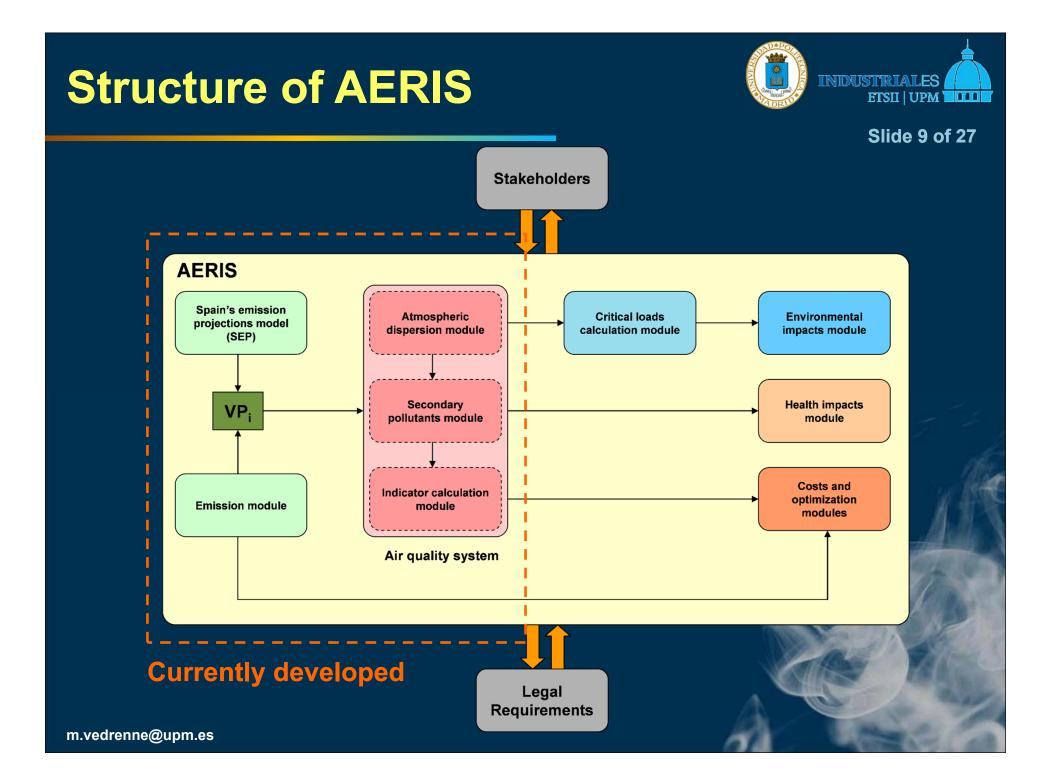
Slide 7 of 27

AERIS

Atmospheric Evaluation and Research Integrated model for Spain

What is **AERIS**?

Slide 8 of 27


• AERIS is an air pollution Integrated Assessment Model conceived for Spain and the Iberian Peninsula.

• Addresses air quality variations (policy-relevant indicators) as a function of percentual variations in emissions against a reference scenario.

• Multi – pollutant approach: SO_2 , NO_2 , NH_3 , PM_{10} , $PM_{2.5}$. Describes formation of O_3 and secondary particles.

• Based in the SIMCA – SERCA modeling system: WRF – SMOKE – CMAQ (Borge et al., 2008).

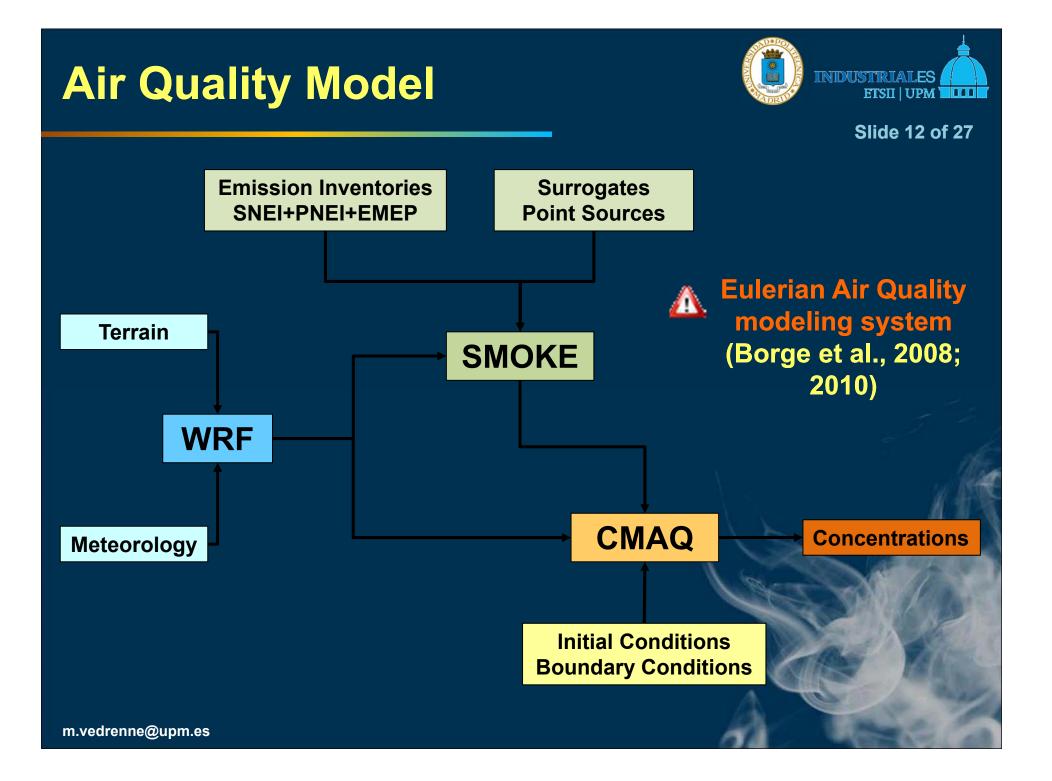
• Constructed with emissions from the 2007 National Emission Inventories of Spain and Portugal. Reference scenario. Activity peak.

Modeled domain

Slide 10 of 27

- **Domain size:** 960 × 1200 km.
- Cell size: 16 km. 4500 cells.
- Domain center: 40°N, 3°W
- Spain and Portugal. Parts of
- France, Morocco and Algeria.
- Spain NUTS3 (province).

Emission Inventories


Emission sectors

Slide 11 of 27

SNAP code	Description	NO_2	SO_2	PM_{10}	<i>PM</i> _{2.5}	NH_3	
010000	Coal - fired power plants $\geq 300 MW$	•	•				
020202	Residential plants $< 500 MW$	•	•	•	•		
030000	Combustion in manufacturing	•	•				
040000	Production processes		•				
070101	Passenger cars - highway driving	•		•	•		
070103	Passenger cars - urban driving	•		•	•		
070201	Light - duty vehicles - highway driving	•		•	•		
070203	Light - duty vehicles - urban driving	•		•	•		
070301	Heavy - duty vehicles - highway driving	•		•	•		
070303	Heavy - duty vehicles - urban driving	•		•	•		
0707/08	Break, tire and road abrasion			•	•		
080500	Airports (air traffic)	•					
080600	Agriculture (machinery)	•	•	•	•		
080800	Industry (machinery)	•	•	•	•		
100101	Culture w/ fertilizers - permanent crops					•	
100201	Culture w/ fertilizers - arable land crops					•	
100500	Other agricultural activities					•	
110000	Other sources and sinks					•	

Specific transfer matrices developed for **AERIS**

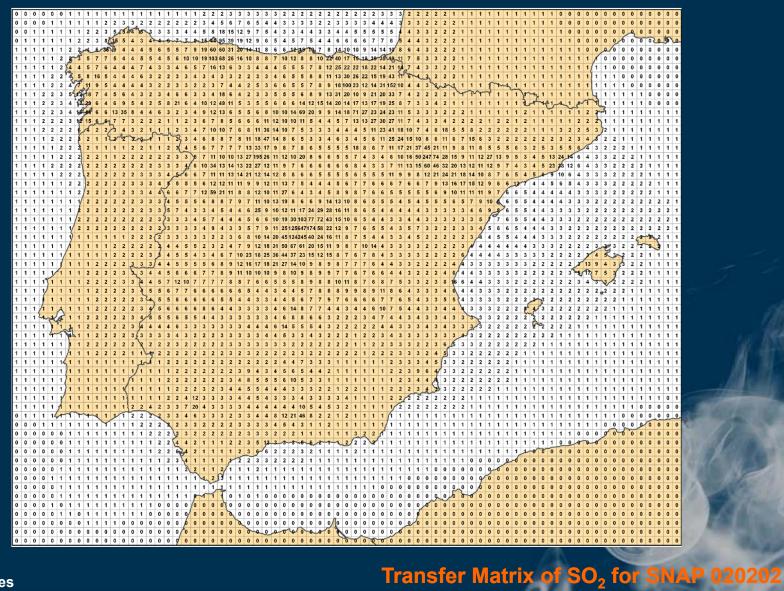
Construction of AERIS

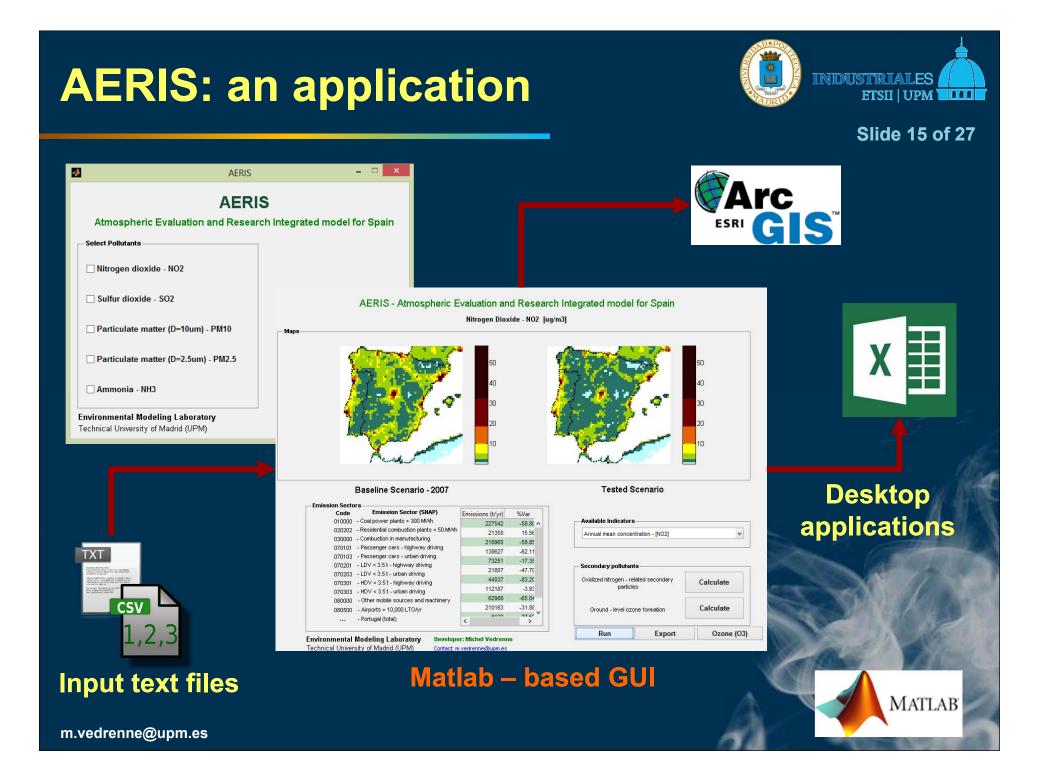
Slide 13 of 27

• **AERIS** is based on a parameterization of the AQM system – use of transfer matrices.

• For primary pollutants, air quality levels are proportional to changes in emissions (Economidis et al., 2008). Linearity. Systematic perturbations – linear regression.

$$[C_i]_{n \times m} = [G_{i,j}]_{n \times m} \cdot p_{i,j} + [C_i]_{n \times m}^0$$


• Changes in emissions were always referred to the baseline scenario (year 2007).


• Transfer matrices were constructed according to Bartincki (1999) and Amann et al., (2011).

Slide 14 of 27

Slide 16 of 27

Model testing and validation

Scenario definition

Slide 17 of 27

- Hypothetic scenario (HS) Emissions likely to occur in Spain in year 2014. Nine sectors were altered (feasible).
- **Baseline scenario (BS)** Emissions reported for year 2007.
- Hypothetic scenario created with the Spain's emission projection model (Lumbreras et al., 2008).
- Four pollutants were followed: SO_2 , NO_x , PM_{10} , and NH_3 . O_3 was also simulated. Annual means.
- The hypothetic scenario was also processed with the SIMCA ensemble. Results reference for comparison.

Scenario definition

INDUSTRIALES

Slide 18 of 27

Emissions at the hypothetic scenario (HS) as a variation percentage of the reference scenario (RS)

SNAP		SO ₂		NO _x		PM ₁₀		NH ₃	
Code	Activity name	E _{RS} ^a	‰ _{HS}	E _{RS}	‰ _{HS}	E _{RS}	‰ _{HS}	E _{RS}	‰ _{HS}
010101	Combustion plants \geq 300MW	805700	-88.6%	235331	-58.8%	17632	0.0 %	0	0.0 %
020202	Residential plants <50MW	12544	-59.7%	24648	15.5%	23461	-5.74%	0	0.0 %
030000	Combustion in manufacturing	83069	-33.0%	225942	-58.8%	27676	0.0 %	0	0.0 %
070101	Passenger cars: highway driving	599	0.0 %	135466	-62.1%	5387	-48.2%	5225	0.0 %
070103	Passenger cars: urban driving	571	0.0 %	75670	-17.3%	8052	-67.5%	473	0.0 %
070301	HDV >3.5 t: highway driving	605	0.0 %	111414	-9.9%	4564	-69.1%	339	0.0 %
070303	HDV >3.5 t: urban driving	324	0.0 %	72325	-65.0%	4049	-88.6%	226	0.0 %
0707/08	Road, tire and break abrasion	0	0.0 %	0	0.0 %	11621	-17.5%	0	0.0 %
100102	Cult. with fertilizers: arable lands	0	0.0 %	8361	0.0 %	736	0.0%	110927	-20.4%
-	Portugal (total)	22918	0.0 %	145250	0.0 %	80563	0.0%	48970	0.0%

^a Emissions are presented in annual metric tons (t • yr⁻¹)

Evaluation criteria

Slide 19 of 27

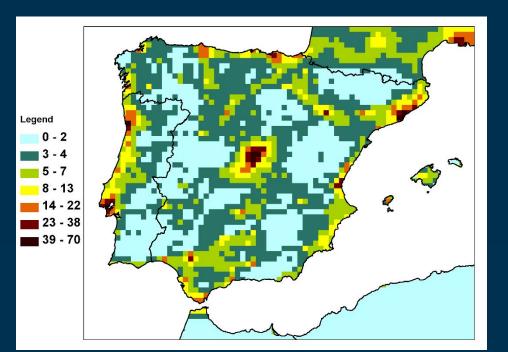
Evaluation through indicators for model benchmarking (Thunis et al., 2011). IAM Prediction vs. AQM Prediction.

Emissions at the hypothetic scenario (HS) as a variation percentage of the reference scenario (RS)

Indicator	Definition	Units	Range
Mean Bias (MB)	$MB = \frac{1}{N} \cdot \sum_{i=1}^{N} \left(P_i - M_i \right)^{\mathbf{b}}$	$\mu g/m^3$	$-\infty - \infty$
Mean Error (ME)	$ME = \frac{1}{N} \cdot \sum_{i=1}^{N} \left P_i - M_i \right $	$\mu g/m^3$	$\infty - 0$
Normalized Mean Bias (NMB)	$NMB = \sum_{i=1}^{N} \left(P_i - M_i \right) / \sum_{i=1}^{N} M_i$	%	- 100 – ∞
Normalized Mean Error (NME)	$NME = \sum_{i=1}^{N} \left P_i - M_i \right / \sum_{i=1}^{N} M_i$	%	$\infty - 0$
Correlation coefficient (r)	$r = \left(\sum_{i=1}^{N} P_i \cdot M_i - N \cdot \overline{P} \cdot \overline{M}\right) / (N-1) \cdot s_P \cdot s_M$	dimensionless	0 – 1

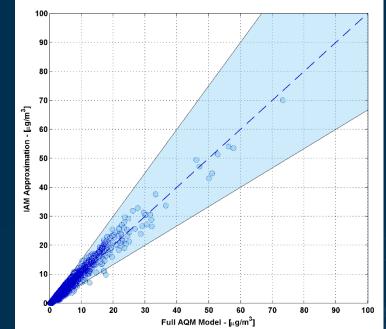
^b *P*-AERIS results, *M*-AQM results, *N*-number of cells of the domain, *s*-standard deviation of the dataset

Slide 20 of 27



Results

Performance for NO₂



Slide 21 of 27

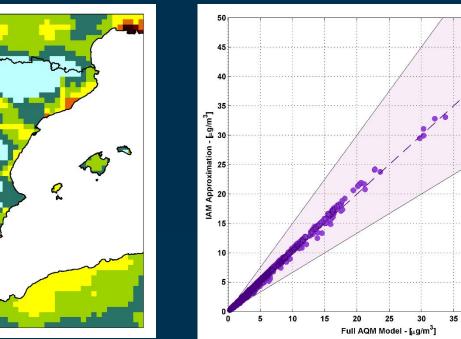
 NO_2 concentrations for the HS (µg/m³)

Statistic Indicators: MB = 0.95 μg/m³ ME = 0.48 μg/m³ MFB = 4.15 % MFE = 13.11 %

Scatterplot for NO₂ concentrations

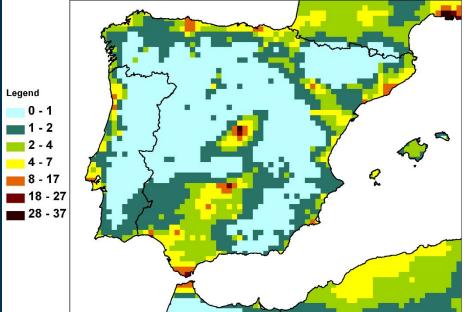
r = 0.9841

Performance for SO₂



40

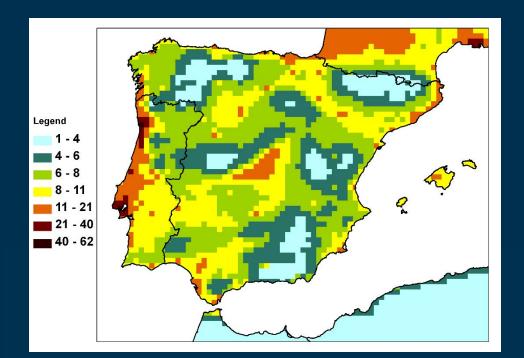
45


50

Slide 22 of 27

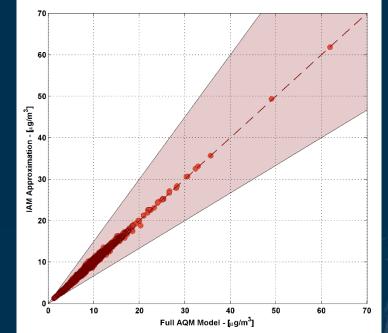
Scatterplot for SO₂ concentrations

r = 0.9986


 SO_2 concentrations for the HS (µg/m³)

Statistic Indicators: MB = 0.09 μg/m³ ME = 0.14 μg/m³ MFB = 3.35 % MFE = 4.97 %

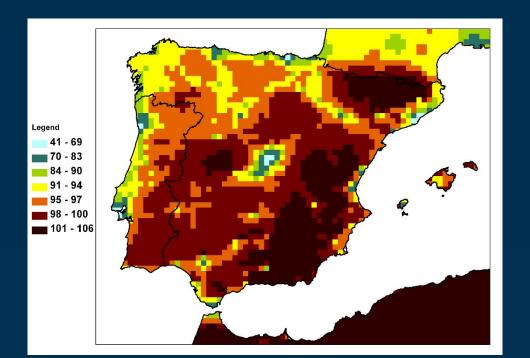
Performance for PM₁₀



Slide 23 of 27

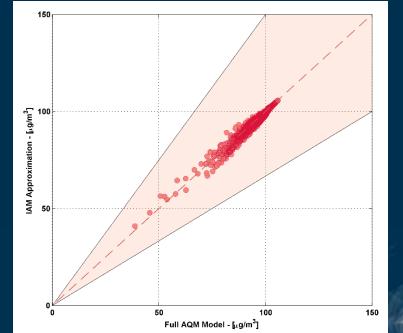
 PM_{10} concentrations for the HS (µg/m³)

Statistic Indicators: MB = 0.08 μg/m³ ME = 0.22 μg/m³ MFB = 1.04 % MFE = 2.37 %


Scatterplot for PM₁₀ concentrations

r = 0.9966

Performance for O₃



Slide 24 of 27

 O_3 concentrations for the HS (µg/m³)

Statistic Indicators: MB = -0.59 μg/m³ ME = 0.82 μg/m³ MFB = -0.61 % MFE = 0.86 %

Scatterplot for O₃ concentrations

r = 0.9810

Slide 25 of 27

Conclusions

Slide 26 of 27

• Although simplified, AERIS performs similarly to the ordinary air quality model.

• Good correspondence levels of model benchmarking indicators.

• Small scale phenomena are catched by AERIS (i.e. cities). Finer scales and high-quality emission inventories.

• Uncertainty analysis is difficult to carry out. However, these are being evaluated.

• AERIS does not intend to replace AQMs. It is only a screening tool for answering "what if?" scenarios.

Slide 26 of 27

- AERIS is still under development. New modules are being constructed and tested. Full version to be delivered in 2014.
- New transfer matrices for sectors and pollutants are being developed.
- Create a stand alone version of the AERIS application.
- Circulate AERIS among stakeholders and policy developers for feedback.
- Possibly reduce scale and create a version for Madrid.

Slide 27 of 27

• Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W., 2011: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Modell. Softw., 26, 1489-1501.

• Bartincki, J., 1999: Computing source - receptor matrices with the EMEP Eulerian Acid Deposition Model. Research Note No. 30. EMEP/MSC-W - Det Norske Meteorologiske Institutt. Oslo, Norway. ISSN 0332-9879.

• Borge, R., Lumbreras, J., and Rodrguez, M.E., 2008a: Development of a high resolution emission inventory for Spain using the SMOKE modelling system: A case study for the years 2000 and 2010. Environ. Modell. Softw. 23, 1026-1044.

• Lumbreras, J., Borge, R., de Andrés, J.M., and Rodríguez, M.E., 2008: A model to calculate consistent atmospheric emission projections and its application to Spain. Atmos. Environ., 42, 5251-5266.

 Thunis, P., Georgieva, E., and Galmarini, S. 2011: A procedure for air quality mode benchmarking. Joint Research Centre (JRC). Ispra, Italy.

END

Thank you for your attention!