

A case study: Dispersion of nitrogen oxides in the vicinity of the Plabutsch tunnel portal in Graz

Abt 15, Luftreinhaltung

Dietmar Oettl, Harmo 15, Madrid 2013

Some remarks

•Complaints of locals assuming exhaust stacks of tunnel causing bad air quality

 Since 2004: Second bore – tunnel is self ventilated – no exhausts at stacks

•High NO₂ burden at portals were simulated in 2010 (application of time extension)

Municipal authorities ordered air quality measurements at the portal
Due to the high observed NO₂ concentrations, tunnel ventilation shall be operated such that tunnel exhausts are emitted via the stacks

Dispersion is assumed to be influenced mainly by:

- Horizontal exit velocity
- Buoyancy effects

Interaction between ambient air and tunnel exhausts - ADAPT

Traffic induced flows and turbulence

Model description – GRAL tunnel module

GRAL = Lagrangian particle model Heuristic formulation of the dispersion process:

Model description – GRAL tunnel module

Physical effects	Model formulation
Jet stream geometry	Assumed friction force according to:
	$\frac{dU_p}{dt} = -K \frac{\partial^2 (U_p - U_{pA})}{\partial y^2} \qquad K = 0.3 \cdot t$
	Bending:
	$\frac{dU_n}{dt} = \frac{1}{2} \alpha U_{nA}^2 \qquad \alpha = 5 \cdot e^{-0.005A_T U_0}$
Buoyancy	Langevin Eq. for vertical turb. vel.:
	$dw = -\frac{w}{T_w}dt + \varepsilon_w^{0.5}d\omega_w \qquad T_w = 2\frac{z}{U_p}$
ADAPT	Gaussian p.d.f. for the horizontal wind component fluctuations of the ambient wind field.

Typical observed wind direction fluctuations vs. wind speed

Observed NO₂ peaks

Site map: Plabutsch South Portal

Dietmar Oettl, Harmo 15, Madrid 2013

Model input

Traffic volume: HDV share: Emissions: 18.800 veh./d/driving direction 13% modelled using NEMO2.0 (Rexeis and Hausberger, 2005) -> 161 kg/d NO_x

Cases: 1.009 (only northerly wind dir.) Av. wind speed: 1.6 m/s Stability classes: modified SRDT-method (US-EPA, 2000; Oettl, 2013) Av. obs. NO_x : 227 µg/m³ Background NO_x : 33 µg/m³ (Graz-West)

Model parameters

Dietmar Oettl, Harmo 15, Madrid 2013

Abt 15, Luftreinhaltung

Model setups

Two slightly different model setups: Standard model assumptions in appl. for regulatory purposes: Constant exit velocity: 3.8 m/s Temperature difference: 0 K

Scenario 2:

Varying exit velocity estimated with traffic-piston equation

$$\left(1+\zeta_e+\lambda\frac{L}{D}\right)U_0^2 = \frac{A_m n}{A_t} \left(V_t - U_0\right)^2$$

Hourly data wasn't available, but was estimated on typical diurnal traffic volume variations.

5e	tunnel entrance loss coefficient (~ 0.2)
λ	tunnel wall friction loss coefficient (0.017)
L	tunnel length (10,000 m)
D	hydraulic diameter of the cross- section (= $4 \cdot \frac{A_t}{C} = 6.7$ m)
С	circumference of the cross section (m)
A_t	tunnel cross sectional area (49 m ²)
$oldsymbol{V}_t$	traffic speed in the tunnel (27.8 m s ⁻¹)
U_0	exit velocity (m s^{-1})
n	number of vehicles in the tunnel, and
A_m	equivalent resistance area of the vehicles (m ²)

Average simulated NO_x concentration

Contraction of the second s

Be aware of the limited spatial representativity of air quality observations near tunnel portals!

Dietmar Oettl, Harmo 15, Madrid 2013

Quantile-quantile plots

Statistical measures

	Mean [µg m ⁻³]	Max [µg m ⁻³]	Fraction al bias	Normalized mean square error	Corr.
Observed	227	770			
Standard	295	1645	-0.26	0.93	0.63
Scenario 2	257	1154	-0.12	0.61	0.54

Chang and Hanna, 2004: FB within ± 0.3 NMSE ≤ 4.0

- Bending plume approach and the additional dispersion due to wind direction fluctuations seems to lead to a realistic plume representation
- Model is much faster than CFD models
- ➢ High concentration variations in the vicinity of the tunnel portal → high grid resolution, monitoring stations have very limited spatial representativity
- Applying constant exit velocities in applications for regulatory purposes is in principal sufficient when using GRAL

Proper simplification is the art of modelling.

Diurnal NO_x variation

Model description – GRAL model

Model description – GRAL model

Result for the Ehrentalerberg-tunnel experiment, 2001 with the GRAL model

