

Modelling wet deposition with high resolution precipitation data

Helen Webster, David Thomson and Andrew Jones Met Office, UK

© Crown copyright Met Office

- Wet deposition
- Modelling of wet deposition in NAME
- Advances in NWP data
- Compatibility of wet deposition schemes and high resolution precipitation data
- Closing thoughts

- Removal of material from the atmosphere within precipitation elements
 - Often the dominant loss process
 - Includes below-cloud (washout) and in-cloud (rainout) scavenging
 - Dependencies
 - Precipitation
 - amount, droplet size, type (rain, snow, etc.), intensity
 - Scavenged material
 - gases: solubility
 - aerosols: particle size, hydrophobic (water hating) / hydrophilic (water loving)

NAME (Numerical Atmosphericdispersion Modelling Environment)

- UK Met Office's Lagrangian dispersion model
 - Uses NWP 3-d flow fields or single site observations
 - Loss processes: radioactive decay, wet & dry deposition, chemical transformations
 - Wide range of applications
 - Emergency response: chemical, biological and nuclear
 - Air quality: forecasts and episode analysis
 - Disease spread (foot and mouth, bluetongue)
 - Identifying source locations and strengths
 - Volcanic ash
 - Dust forecasts
 - Policy support

Met Office NAME's wet deposition

- More than 20 years old
- Uses a bulk parameterisation
 - Λ is the scavenging coefficient ($\Lambda = Ar^B$)

- Assumes input precipitation data (*r*) has two components
 - dynamic / large-scale (resolved by NWP model)
 - convective (parametrised within NWP model)
- Different scavenging parameters (A and B) for
 - rain / snow and ice
 - convective / dynamic precipitation
 - in-cloud / below-cloud scavenging
- Total wet deposition given by sum of wet deposition by dynamic and convective components

Numerical Weather Prediction (NWP) input data

- gridded model data
- full 3-d structure
- advances in computing and science

- ► increases in resolution
- ▶ improvements in accuracy
- ► large volumes of data
 - ► data storage / transfer issues
 - increased computing power / model run time

© Crown copyright Met Office

Current Met Office NWP models

- Global
 - 25 km horizontal resolution
 - dynamic (resolved) and convective (parameterised) precipitation
 - 3 hourly time resolution
 - height ~80 km
 - 144 hour forecast
- UKV
 - UK region
 - 1.5 km horizontal resolution
 - convection permitting
 - hourly time resolution
 - height ~40 km
 - 36 hour forecast

Met Office NAME's wet deposition parametrisation

- NWP precipitation data
 - dynamic / large-scale resolved
 - convective parametrised
 - UKV precipitation
 - dynamic + convective resolved
 - no parametrised

- Wet deposition scheme
 - different parametrisation for scavenging by dynamic (resolved) and convective (parametrised)
 - resolved convective precipitation uses dynamic parametrisation!
- X
 - predicted wet deposition dependent on ratio of resolved precipitation to parametrised precipitation!
- modifications to wet deposition scheme Remove dynamic / convective difference

Calculate a total scavenging coefficient (Λ_{tot})

$$\Lambda_{tot} = \left(1 - C_f\right)A_1r_{dyn}^{B_1} + C_fA_2\left(r_{dyn} + \frac{r_{con}}{C_f}\right)^{B_f}$$

time-step independent

© Crown copyright Met Office

Rain hopping – instantaneous precipitation fields

Precipitation

Maximum value = 9.68e+01 mm / hr 1.00e-02 1.00e-01 1.00e+00 1.00e+01 1.00e+02 1.00e+03

- 3 hourly instantaneous fields
- Thin band of precipitation (front)
- Precipitation (as seen by the dispersion model) appears to hop from one location to another
- Problem caused by mismatch between high spatial resolution and comparatively low temporal resolution

Rain hopping – instantaneous precipitation fields

Precipitation

Wet deposition

Instantaneous vs mean precipitation

Instantaneous

Wet deposition – instantaneous vs mean precipitation

Wet deposition

Maximum value = 8.56e-10 g / m^2 1.00e-13 1.00e-12 1.00e-11 1.00e-10 1.00e-09 1.00e-08

Instantaneous

Wet deposition

Mean

- Advances in NWP
 - advances in dispersion modelling capability
 - improved accuracy
 - dispersion modelling challenges
 - data volume
 - revisions to modelling approaches
- Highlights
 - Regular reviewing of model parametrisations is good practice
 - Helpful to have an understanding of the model parametrisations
 - Importance of model testing when using new input data sets

