

A Preliminary Analysis of Measurements from a Near-Field Pollutants Dispersion Campaign in a Stratified Surface Layer

Xiao Wei, Eric Dupont, Bertrand Carissimo, Eric Gilbert and Luc Musson-Genon

HARMO 15, 6-9 May 2013, Madrid, Spain

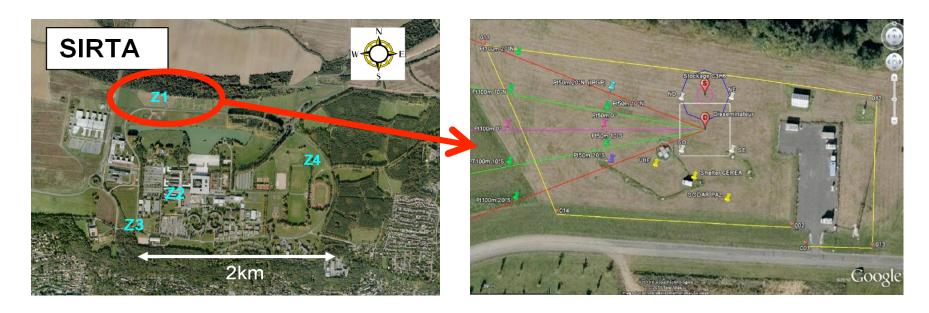
Introduction

- Pollutants dispersion in a stable atmospheric boundary layer and in complex environment still relatively poorly described by modeling
- Stable condition difficult to reproduce in a wind tunnel
- Major interest in the field of air pollution from human activities (industrial risks, road transportation, etc.)
- Experimental program on the site SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) measuring structure of turbulence and associated pollutants dispersion through high temporal and spatial resolution measurements in a stratified surface layer and in near-field

Contents

- SIRTA experimental program
- Sonic data processing and analysis
- **■** Concentration data processing and analysis
- **■** Conclusion et perspective

SIRTA experimental program: objectives and characteristics


Objectives:

- Document in high temporal and spatial resolution and in near field, wind fluctuations and concentration fluctuations of a tracer gas
- Relationships expected between concentration fluctuations and passage of turbulent structure

Characteristics:

- Experiment in near field (50 to 200 m)
- Focus on stable thermal stratification, but may include some neutral stratification or slightly convective situations
- High frequency measurements (about 10Hz) to cover the entire frequency spectrum of fluctuations
- Large number of sensors measuring turbulence and concentration of tracer gas

SIRTA experimental program: field and meteorological conditions

Meteorological conditions :

- Wind direction between 75° and 105°, being as close as possible to 90° (easterly wind)
- Wind velocity between about 1 and 5 ms⁻¹ (at the release height i.e. 3 m) in order to stay in unfavorable dispersion conditions
- Temperature difference T(30m) T(10m) must be positive, assuring to be in stable stratification.

SIRTA experimental program:

devices

Tracer gas

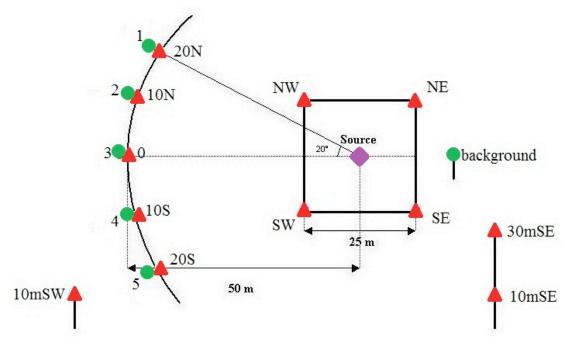
Ultrasonic anemometers

Ultrasonic anemometers (front) and PID (behind)

■ Tracer gas: propylene

- Low toxicity
- Low boiling point
- Low cost
- Low ionization potential

Ultrasonic anemometer:


- Measuring at 10 Hz
- Three components of wind speed and air temperature

■ Photo ionization detector (PID):

- Measuring at 50Hz
- Gas concentration
- Sensible to propylene and to other volatile organic compounds (VOCs)

SIRTA experimental program: sensors position

wooded area

Source (at 3m height)

▲ Ultrasonic anemometers:

- "Sonic square" (at 3m height): NW, NE, SW, SE
- "sonic arc at 50m" (at 3m height): 20N, 10N, 0, 10S, 20S
- Two masts: 10mSW, 10mSE and 30mSE

• PIDs:

- From north to south: PID 1, 2, 3, 4, 5 (at 3m height)
- PID background (at 3m height)

- Preliminary campaign was held from January to March 2012
- Intensive Observation Period (IOP) on 21st March 2012: lasting about 1h30 (from 20:41 to 22:12) with a continuous gas release for about an hour
- (u, v, w) in meteorological reference and (a,b,w) in rotated frame
- *dd* as mean wind direction
- Selection of a 30min sub-period (from 20:58 to 21:30) with stationary meteorological conditions

	NE	NW	SE	SW	20N	10N	0	10S	20S
dd_{mean} (°)	82.9	83.1	81.9	83.5	90.4	84.4	85.5	82.0	85.6
a_{mean} (ms ⁻¹)	1.50	1.58	1.93	2.16	1.50	1.77	1.99	2.12	2.09
σ_a^2 (m ² s ⁻²)	0.27	0.29	0.33	0.33	0.28	0.29	0.24	0.28	0.33
$\sigma_b^2 (\mathrm{m}^2\mathrm{s}^{-2})$	0.18	0.21	0.23	0.25	0.23	0.22	0.22	0.25	0.24
σ_w^2 (m ² s ⁻²)	0.07	0.07	0.11	0.09	0.07	0.08	0.08	0.08	0.09
$TKE(m^2s^{-2})$	0.26	0.28	0.33	0.34	0.29	0.29	0.27	0.31	0.33
$u_*(\text{ms}^{-1})$	0.18	0.19	0.25	0.22	0.19	0.19	0.18	0.20	0.21
Q_0 (Kms ⁻¹)	-0.04	-0.03	-0.04	-0.04	-0.03	-0.05	-0.04	-0.04	-0.04
L_{MO} (m)	11	14	27	17	14	11	11	14	19

- Same calculation for anemometers 10mSW, 10mSE and 30mSE:
 - Vertical stability verified by *T* gradient
 - $L_{MO} \sim 50$ m and 120m at heights of 10m and 30m

- Preliminary campaign was held from January to March 2012
- Intensive Observation Period (IOP) on 21st March 2012: lasting about 1h30 (from 20:41 to 22:12) with a continuous gas release for about an hour
- (u, v, w) in meteorological reference and (a,b,w) in rotated frame
- *dd* as mean wind direction
- Selection of a 30min sub-period (from 20:58 to 21:30) with stationary meteorological conditions

	NE	NW	SE	SW	20N	10N	0	10S	20S
$dd_{mean}(^{\circ})$	82.9	83.1	81.9	83.5	90.4	84.4	85.5	82.0	85.6
a_{mean} (ms ⁻¹)	1.50	1.58	1.93	2.16	1.50	1.77	1.99	2.12	2.09
σ_a^2 (m ² s ⁻²)	0.27	0.29	0.33	0.33	0.28	0.29	0.24	0.28	0.33
σ_b^2 (m ² s ⁻²)	0.18	0.21	0.23	0.25	0.23	0.22	0.22	0.25	0.24
$\sigma_w^2 (\mathrm{m}^2 \mathrm{s}^{-2})$	0.07	0.07	0.11	0.09	0.07	0.08	0.08	0.08	0.09
$TKE(m^2s^{-2})$	0.26	0.28	0.33	0.34	0.29	0.29	0.27	0.31	0.33
$u_*(\text{ms}^{-1})$	0.18	0.19	0.25	0.22	0.19	0.19	0.18	0.20	0.21
Q_0 (Kms ⁻¹)	-0.04	-0.03	-0.04	-0.04	-0.03	-0.05	-0.04	-0.04	-0.04
L_{MO} (m)	11	14	27	17	14	11	11	14	19

- Same calculation for anemometers 10mSW, 10mSE and 30mSE:
 - Vertical stability verified by *T* gradient
 - $L_{MO} \sim 50$ m and 120m at heights of 10m and 30m

- Preliminary campaign was held from January to March 2012
- Intensive Observation Period (IOP) on 21st March 2012: lasting about 1h30 (from 20:41 to 22:12) with a continuous gas release for about an hour
- (u, v, w) in meteorological reference and (a,b,w) in rotated frame
- **dd** as mean wind direction
- Selection of a 30min sub-period (from 20:58 to 21:30) with stationary meteorological conditions

	NE	NW	SE	SW	20N	10N	0	10S	20S
dd_{mean} (°)	82.9	83.1	81.9	83.5	90.4	84.4	85.5	82.0	85.6
a_{mean} (ms ⁻¹)	1.50	1.58	1.93	2.16	1.50	1.77	1.99	2.12	2.09
$\sigma_a^2 (\mathrm{m}^2 \mathrm{s}^{-2})$	0.27	0.29	0.33	0.33	0.28	0.29	0.24	0.28	0.33
$\sigma_b^2 (\mathrm{m}^2\mathrm{s}^{-2})$	0.18	0.21	0.23	0.25	0.23	0.22	0.22	0.25	0.24
$\sigma_w^2 (\mathrm{m}^2 \mathrm{s}^{-2})$	0.07	0.07	0.11	0.09	0.07	0.08	0.08	0.08	0.09
$TKE(m^2s^{-2})$	0.26	0.28	0.33	0.34	0.29	0.29	0.27	0.31	0.33
$u_*(\text{ms}^{-1})$	0.18	0.19	0.25	0.22	0.19	0.19	0.18	0.20	0.21
Q_0 (Kms ⁻¹)	-0.04	-0.03	-0.04	-0.04	-0.03	-0.05	-0.04	-0.04	-0.04
L_{MO} (m)	11	14	27	17	14	11	11	14	19

- Same calculation for anemometers 10mSW, 10mSE and 30mSE:
 - Vertical stability verified by *T* gradient
 - $L_{MO} \sim 50$ m and 120m at heights of 10m and 30m

- Preliminary campaign was held from January to March 2012
- Intensive Observation Period (IOP) on 21st March 2012: lasting about 1h30 (from 20:41 to 22:12) with a continuous gas release for about an hour
- (u, v, w) in meteorological reference and (a,b,w) in rotated frame
- *dd* as mean wind direction
- Selection of a 30min sub-period (from 20:58 to 21:30) with stationary meteorological conditions

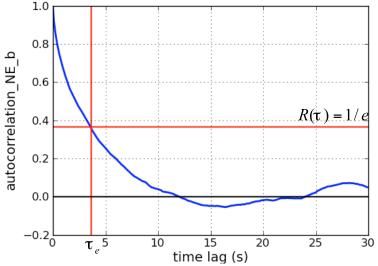
	NE	NW	SE	SW	20N	10N	0	10S	20S
dd_{mean} (°)	82.9	83.1	81.9	83.5	90.4	84.4	85.5	82.0	85.6
a_{mean} (ms ⁻¹)	1.50	1.58	1.93	2.16	1.50	1.77	1.99	2.12	2.09
$\sigma_a^2 (\mathrm{m}^2 \mathrm{s}^{-2})$	0.27	0.29	0.33	0.33	0.28	0.29	0.24	0.28	0.33
σ_b^2 (m ² s ⁻²)	0.18	0.21	0.23	0.25	0.23	0.22	0.22	0.25	0.24
σ_w^2 (m ² s ⁻²)	0.07	0.07	0.11	0.09	0.07	0.08	0.08	0.08	0.09
$TKE(m^2s^{-2})$	0.26	0.28	0.33	0.34	0.29	0.29	0.27	0.31	0.33
$u_*({\rm ms}^{-1})$	0.18	0.19	0.25	0.22	0.19	0.19	0.18	0.20	0.21
Q_0 (Kms ⁻¹)	-0.04	-0.03	-0.04	-0.04	-0.03	-0.05	-0.04	-0.04	-0.04
L_{MO} (m)	11	14	27	17	14	11	11	14	19

- Same calculation for anemometers 10mSW, 10mSE and 30mSE:
 - Vertical stability verified by *T* gradient
 - $L_{MO} \sim 50$ m and 120m at heights of 10m and 30m

- Preliminary campaign was held from January to March 2012
- Intensive Observation Period (IOP) on 21st March 2012: lasting about 1h30 (from 20:41 to 22:12) with a continuous gas release for about an hour
- (u, v, w) in meteorological reference and (a,b,w) in rotated frame
- dd as mean wind direction
- Selection of a 30min sub-period (from 20:58 to 21:30) with stationary meteorological conditions

	NE	NW	SE	SW	20N	10N	0	10S	20S
dd_{mean} (°)	82.9	83.1	81.9	83.5	90.4	84.4	85.5	82.0	85.6
a_{mean} (ms ⁻¹)	1.50	1.58	1.93	2.16	1.50	1.77	1.99	2.12	2.09
σ_a^2 (m ² s ⁻²)	0.27	0.29	0.33	0.33	0.28	0.29	0.24	0.28	0.33
$\sigma_b^2 (\mathrm{m}^2\mathrm{s}^{-2})$	0.18	0.21	0.23	0.25	0.23	0.22	0.22	0.25	0.24
σ_w^2 (m ² s ⁻²)	0.07	0.07	0.11	0.09	0.07	0.08	0.08	0.08	0.09
$TKE(m^2s^{-2})$	0.26	0.28	0.33	0.34	0.29	0.29	0.27	0.31	0.33
$u_*(\text{ms}^{-1})$	0.18	0.19	0.25	0.22	0.19	0.19	0.18	0.20	0.21
Q_0 (Kms ⁻¹)	-0.04	-0.03	-0.04	-0.04	-0.03	-0.05	-0.04	-0.04	-0.04
L_{MO} (m)	11	14	27	17	14	11	11	14	19

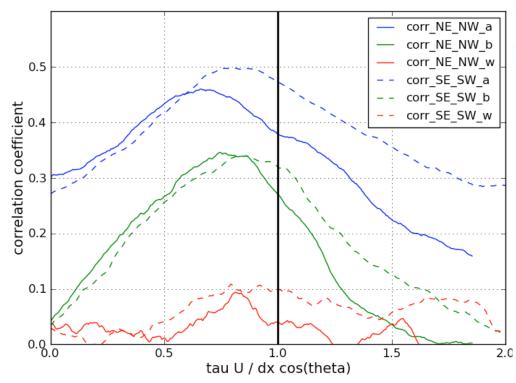
- Same calculation for anemometers 10mSW, 10mSE and 30mSE:
 - Vertical stability verified by *T* gradient
 - $L_{MO} \sim 50$ m and 120m at heights of 10m and 30m

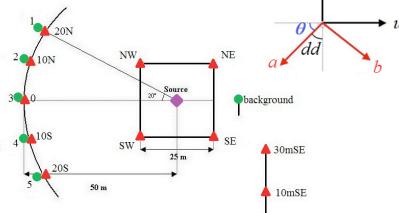

Sonic data processing and analysis: integral length scale

■ Integral length scale: characteristic of the largest scales in a turbulent flow

$$L = a_{mov}T_e$$

Integral time scale approximation


$$T_i = \int_0^\infty R(\tau) d\tau$$
 $T_e = \int_0^{\tau_e} R(\tau) d\tau \approx \tau_e$


	NE	NW	SE	SW	20N	10N	0	10S	20S	10m SW	10m SE	30m SE
L_{aa} (m)	13.46	12.79	15.08	18.59	14.10	17.35	15.55	13.78	18.84	15.37	28.58	31.98
L_{bb} (m)	5.39	6.32	5.22	7.99	6.60	7.61	7.38	7.63	6.49	7.98	9.99	10.33
L_{ww} (m)	1.65	1.90	2.71	2.59	2.10	1.95	2.39	1.91	1.88	4.43	5.51	5.90

- Quantified anisotropy of turbulence near ground in stable conditions
- *L* increasing with altitude

Sonic data processing and analysis: velocity cross-correlation

Spatial cross-correlation of anemometers (NE,NW) and (SE,SW) as a function of a normalized time lag

■ Normalized time lag:

$$\tau_{norm} = \frac{\tau}{t_{th}}$$
 with $t_{th} = \frac{dx_{eff}}{U} = \frac{dx\cos(\theta)}{U}$

- Cross-correlation peak reaching up to 0.5 for streamwise component
- Peaks on the left of the vertical line at $\tau U/dxcos\theta=1$

Sonic data processing and analysis: velocity cross-correlation

Eddy advection velocity:

$$U_{adv} = dx_{eff} / \tau_{max}$$

Ratio of the eddy advection velocity to the mean wind speed

$$r = U_{adv} / U$$

	$U(\text{ms}^{-1})$	$U_{adv a} (\text{ms}^{-1})$	$U_{adv b}$ (ms ⁻¹)	$U_{adv w}$ (ms ⁻¹)	r_a	r_b	r_w
(NE, NW)	1.54	2.31	2.06	1.89	1.50	1.34	1.23
(SE, SW)	2.05	2.53	2.48	2.58	1.23	1.19	1.26

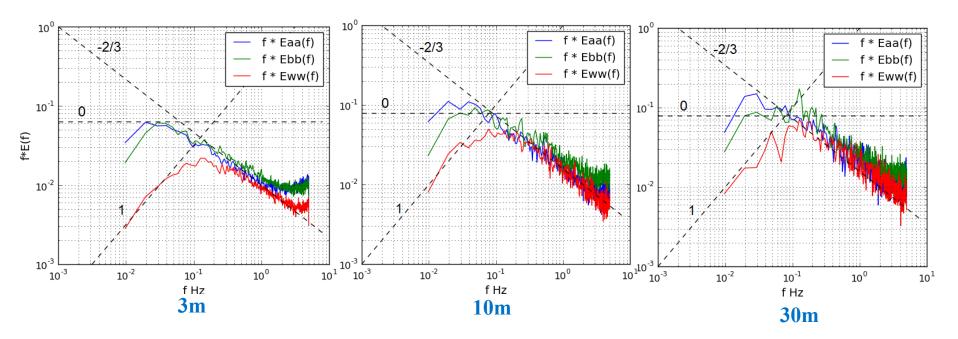
■ Discussion:

- U_{adv} 20% to 50% greater than U
- Similar results found in HATS field program (Horst T.W. et al. 2004)
- Strong vertical velocity gradient in the surface layer near the ground and eddy advection affected by the flow at higher level
- Taylor's hypothesis not well respected during the experiment

Sonic data processing and analysis: power spectra

■ TKE power spectra

- Comparison with Kolmogorov's theory
- Existence of an inertial subrange
- Slope between -1 and -5/3

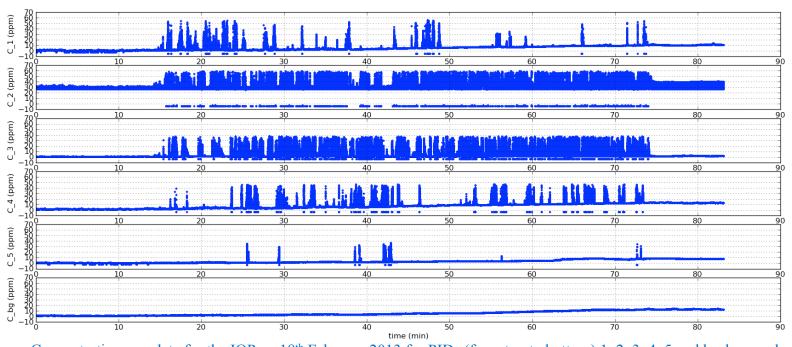

■ Eddy surface layer very close to ground (Drobinski et al. 2004):

- Eddies coming from upper layers stretched along wind direction and lose their isotropy
- Three regions found in velocity spectra (in near-neutral stratification)

$$\begin{cases} E_{ii}(k) \propto k^{-5/3} & \text{for } k \geq k_u \\ E_{ii}(k) \propto k^{-1} & \text{for } k_u \geq k \geq k_l & i = (a, b) \\ E_{ii}(k) \propto k^0 & \text{for } k_l \geq k \end{cases}$$

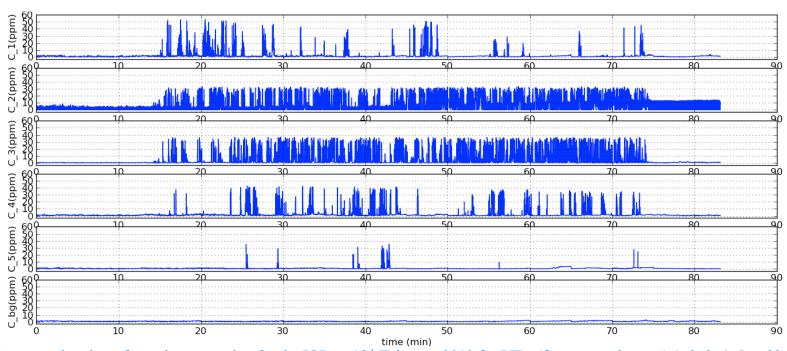
$$\begin{cases} E_{ww}(k) \propto k^{-5/3} & \text{for } k \geq k_u \\ E_{ww}(k) \propto k^0 & \text{for } k_l \geq k \end{cases}$$

Sonic data processing and analysis: power spectra



Discussion:

- Average spectra of anemometers at the same level
- Different spectrum form between vertical and horizontal velocity components
- Vertical velocity spectrum increasingly closed to the others with increasing heights
 → less anisotropic turbulence at higher level
- Some evidence of k^{-1} subrange found in spectra (slope 0 in figures)


Concentration data processing and analysis: value correction

- Problem with the mass flow controller → better concentration data quality for the new IOP on 18th Feb. 2013: lasting for 83min (from 16:21 to 17:45) with a continuous gas release of an hour
- Raw data: gas concentration in ppm at 50 Hz
 - Negative values (calibration interval problem)
 - Sensor drift and non zero off-set
 - Background concentration

Concentration data processing and analysis: value correction

- Negative values elimination: linear interpolation of its non-negative neighbors
- Baseline method to remove sensors drift and background concentration: average of the 200 smallest values every 5min

Concentration data after value correction for the IOP on 18th February 2013 for PIDs (from top to bottom) 1, 2, 3, 4, 5 and background.

Conclusion and perspective

Sonic data processing and analysis:

- Characterization of the turbulence by integral length scale showing strong anisotropy: $L_{aa} > L_{bb} >> L_{ww}$
- Spatial velocity cross-correlation: $U_{adv} > U$
- Velocity spectra : evidence of -1 power law at intermediate frequency subrange

Concentration data processing and analysis:

Value correction using a baseline method

Perspective:

- More data processing and analysis for new IOPs:
 - Sonic data: coherent spectra, wavelet analysis, dissipation rate, etc.
 - Concentration data: data correction by background measurements, power spectra, etc.
- Relationships between turbulence and concentration fluctuations
- Additional ultrasonic anemometers and PIDs allowing to extend the instrumental set-up
- Numerical simulations with the open source CFD code Code Saturne developed at CEREA using different turbulence models (k- ϵ , R_{ij} - ϵ and LES)

THANK YOU FOR YOUR ATTENTION

Email: xiao.wei@edf.fr