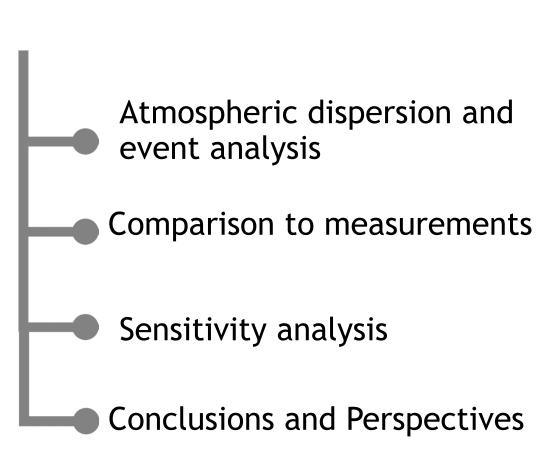
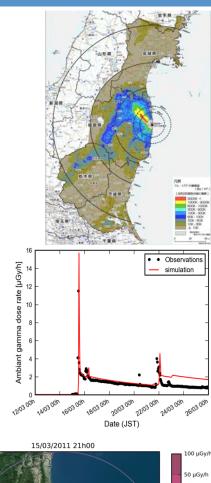
IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire


THE FUKUSHIMA DAIICHI POWER PLANT ACCIDENT: A CASE STUDY FOR MODEL EVALUATION AND SENSITIVITY SIMULATIONS AT LOCAL SCALE


I.Korsakissok, A. Mathieu, D.Didier

HARMO 15 – 06/05/2013

Outline

Gaussian puff

u∆t_{puff}

Gaussian puff model pX

Wind **u** IRSN's operational model, used for emergency purposes

Local scale (< 100 km)

<u>3D meteorological data, varying in time</u>

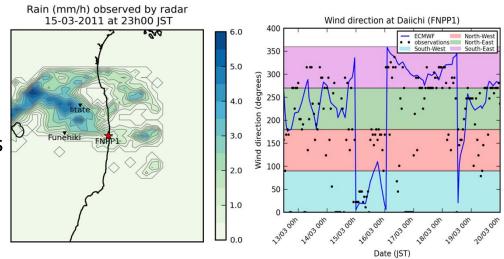
Radioactive decay: Comprehensive mechanism, decay products

Dry and wet deposition

Dry deposition : constant velocity v_d (0.2 cm/s for particles, 0.7 cm/s for molecular iodine, 0.05 cm/s over water)

Wet deposition : $\Lambda_s = \Lambda_0 p_o$ with p_o the rain (default: $\Lambda_0=5.10^{-5}$ h/mm/s)

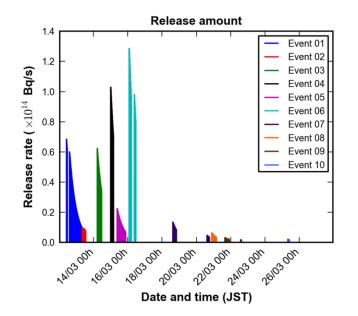
Dose rate computation



IRS

Atmospheric dispersion

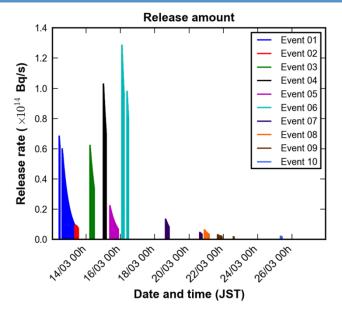
Meteorological fields

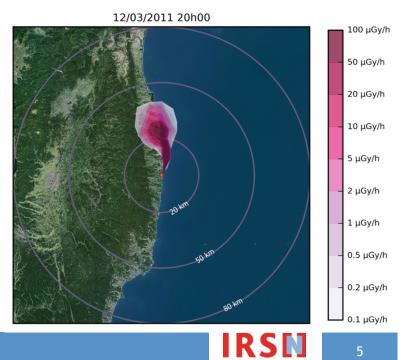

- ECMWF forecast, 0.125°, 3 hours
- > Daiichi wind observations, 10 minutes
- > Rain radar observations, 10 minutes

Atmospheric release, IRSN's estimation

(Mathieu et al, 2012, Elements)

- > Total quantity consistent with NISA estimation
- > 73 radioisotopes emitted
- > 91% of the released activity comes from noble gases,
- > 6% from iodine, < 1% from cesium

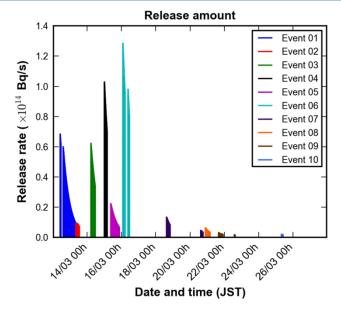


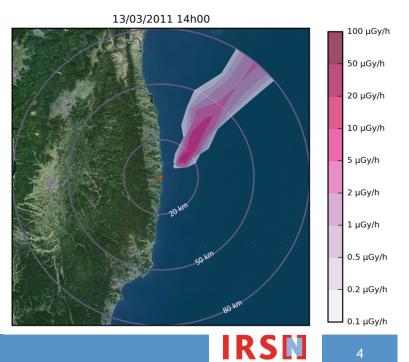


Number	Event	Main plume travel direction	Source height
1	Unit 1 - hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

Event 1: 12 March 10h JST (venting) and 7 15h0 JST (explosion)

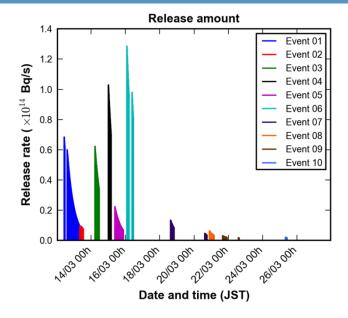
Atmospheric dispersion

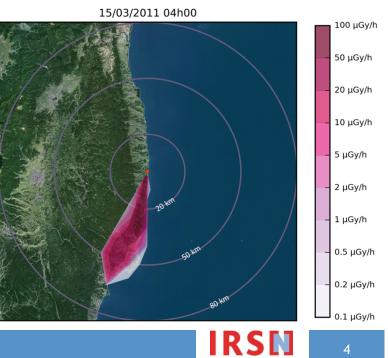




Number	Event	Main plume travel direction	Source height
1	Unit 1 - venting and hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

- Event 2: 13 March 08h JST (venting) 7
- Event 3: 14 March 11h JST (explosion) 7

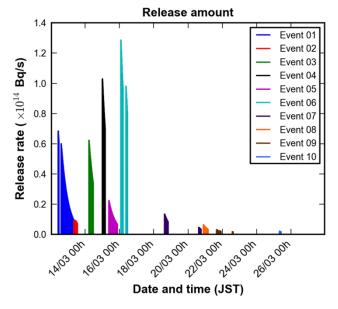


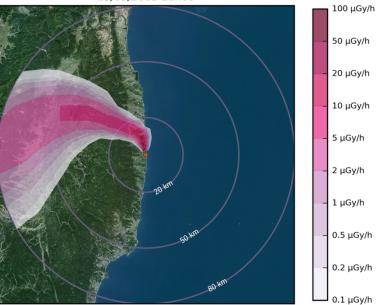


Number	Event	Main plume travel direction	Source height
1	Unit 1 - hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

Event 4: 15 March 00h JST (venting) 7

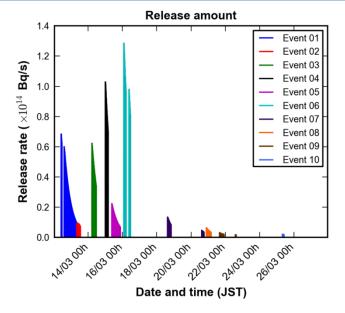
Atmospheric dispersion and input data

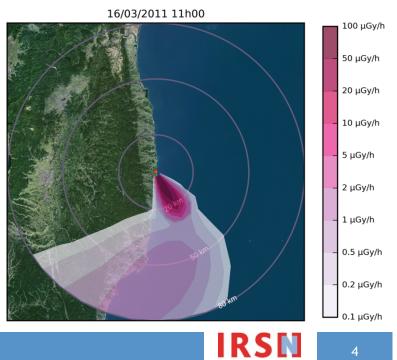



Number	Event	Main plume travel direction	Source height
1	Unit 1 - hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

- Event 5: 15 March 09h JST to 21h JST
- Wet deposition

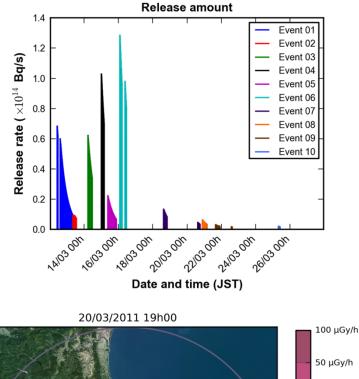
Atmospheric dispersion and input data

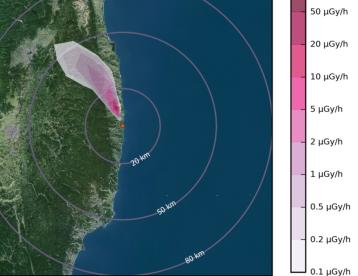



IRSN

Number	Event	Main plume travel direction	Source height
1	Unit 1 - hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

- Event 6: 16 March 01h and 10h JST 7
- Certainly overestimated 7

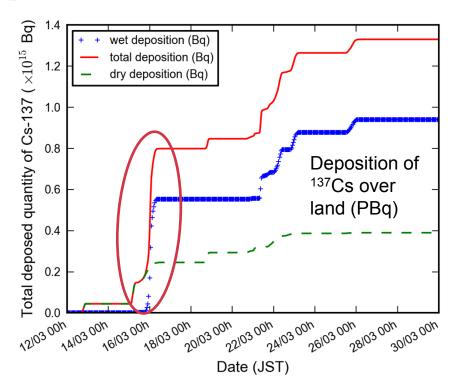


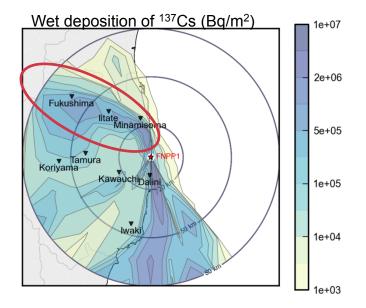


Number	Event	Main plume travel direction	Source height
1	Unit 1 - hydrogen explosion	North, then east	diluted on 100m
2	Unit 3 - venting	East (Pacific Ocean)	120m
3	Unit 3 - hydrogen explosion	East (Pacific Ocean)	diluted on 300m
4	Unit 2 - venting	South	120m
5	Unit 2 - breach on the wet-well	West, north- west, south	20m
6	Units 2 and 3 pressure decrease	South	20m
7	-	North	120m
8	-	South	120m
9	Units 2 and 3 (white and grey smokes)	South-west	50m
10	-	West	120m

- **>** Events 7-10: smaller releases
- Wet deposition on 21-22 March

Atmospheric dispersion and input data





IRSN

4

Assessment of the contamination of the Japanese land at local scale

Wet deposition in the NW (Event 5 - March 15)

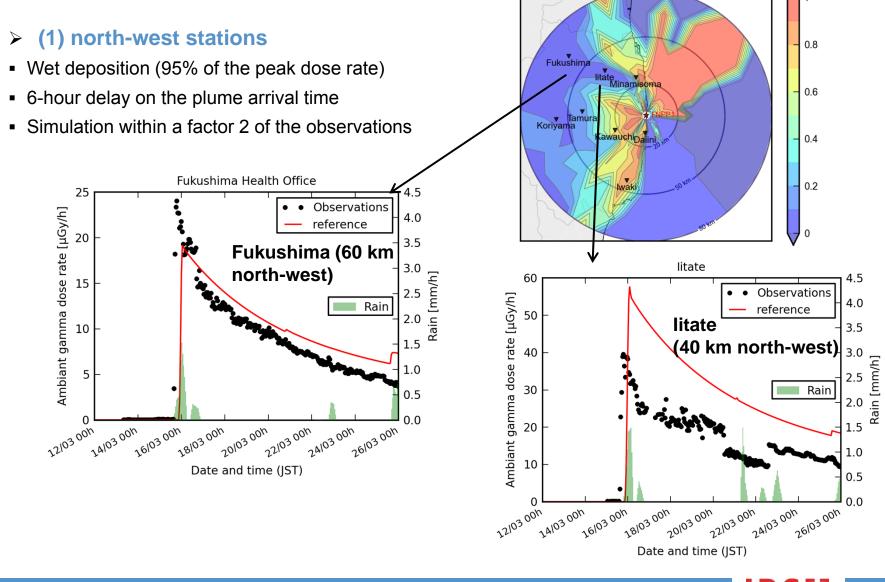
- > Wet deposition: 2/3 of total deposition
- > Wet deposition in the north-west
- > Dry deposition mostly along the coast

But... how does this compare to measurements?

Gamma dose rate measurements

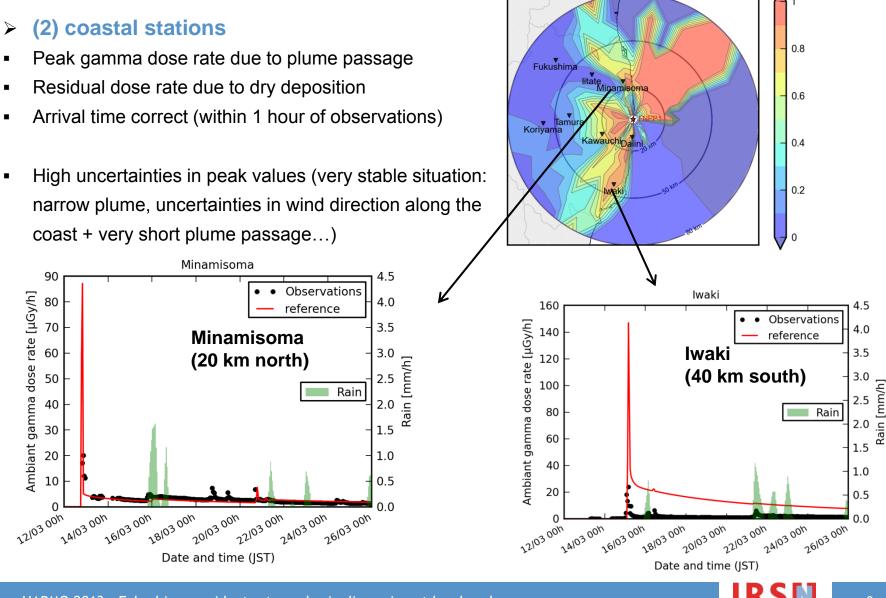
- 8 monitoring stations within 60 km of FNPP1
- Good temporal resolution (10 minutes), with a few missing data
- Drawbacks: spatial coverage too scarce, no detail on plume composition

Deposition measurements

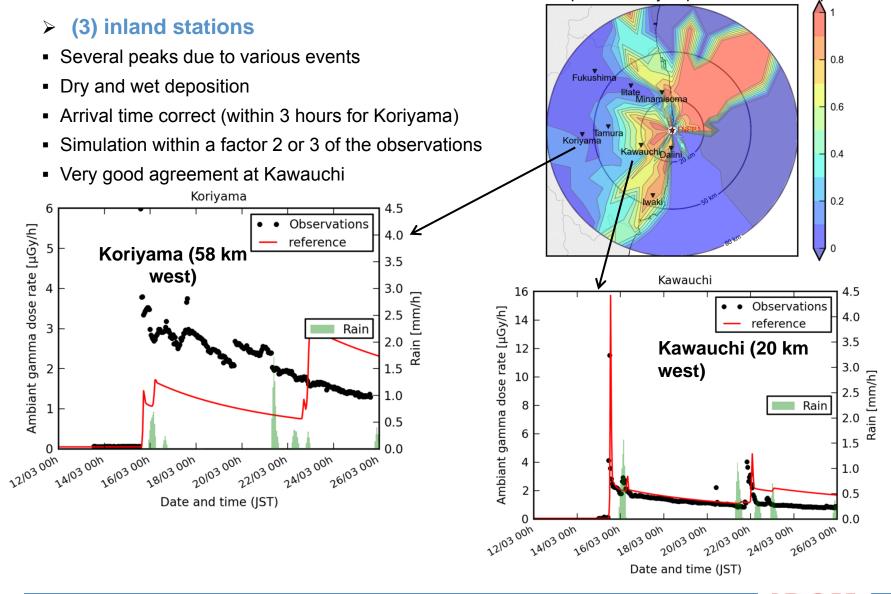

- Ground measurements of deposition
- Very good spatial coverage, but less information in "hot" areas
- Drawbacks: integrated in time, no information on plume passage, noble gases, short-lived radionuclides
- **a** Both kinds of measurements have to be used
- Can a model be good both on gamma dose rate and deposition ?

Comparison to measurements

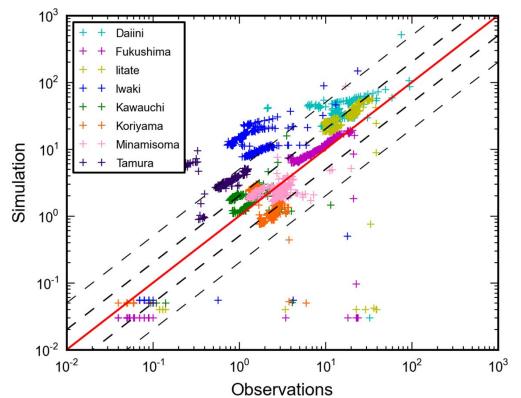
Comparison to gamma dose rate monitoring stations


Proportion of dry deposition on total deposition of ¹³⁷Cs

Comparison to measurements


Comparison to gamma dose rate monitoring stations

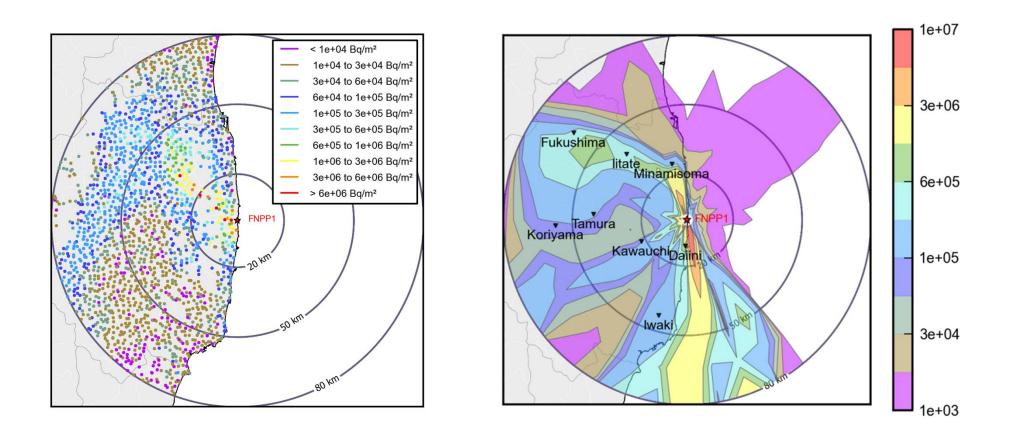
Proportion of dry deposition on total deposition of ¹³⁷Cs


Comparison to gamma dose rate monitoring stations

Proportion of dry deposition on total deposition of ¹³⁷Cs

Comparison to gamma dose rate monitoring stations

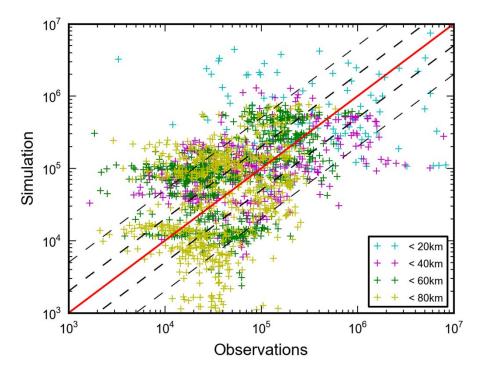
- > Overall performance
- FAC2 : 52% (proportion of values within a factor 2 of the observations)
- FAC5 : 85% (proportion of values within a factor 5 of the observations)
- Correlation: 0.72
- Figure of Merit in Time (FMT): 0.43



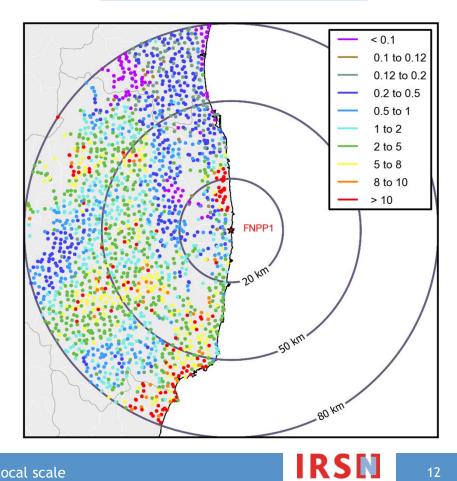
very good compared to "traditional" models behavior on dispersion experiments

Comparison to measurements

Comparison to MEXT deposition measurements of ¹³⁷Cs



¹³⁷Cs deposition measurements (Bq/m²): 1800 points within the simulation domain (80 km) Simulated values of ¹³⁷Cs (Bq/m²)


Comparison to measurements

Comparison to MEXT deposition measurements of ¹³⁷Cs

- > Map of « bias factor » C_M/C_O
- Red: overestimated by a factor 10
- > **Purple**: underestimated by a factor 10
- Blue and green: within a factor 5 \succ

- **Overall performance**
- FAC2: 31%
- FAC5:73%
- FAC10: 90%

Questions...

We know there are huge uncertainties in the input data...

Release assessment: timing of peaks, quantities (overestimation on March, 16)
 Meteorological data: wind direction (problems on March, 15 and along the coast), rain

But how do they compare to model uncertainties ?

Deposition parameters: deposition velocity, scavenging coefficient
 Dispersion parameters: Gaussian standard deviations, mixing height

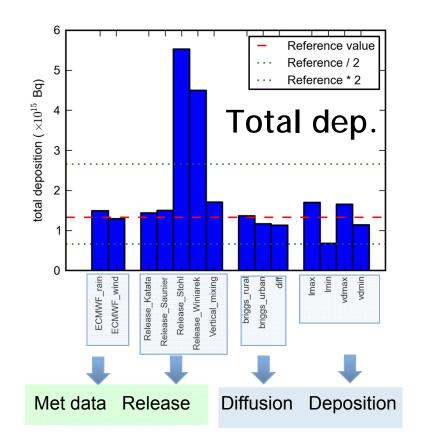
- What are the most sensitive parameters ?
- What are the most sensitive results ?

Reference value in red, name on figures in *blue*

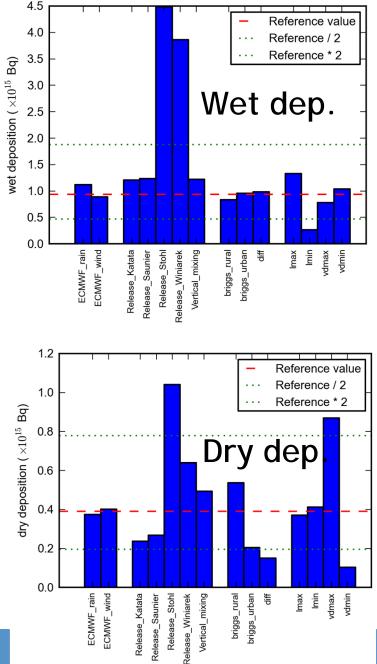
Input parameters

- Release height: time varying, diluted between 20 and 150m (Vertical mixing)
- Release: IRSN, Katata et al, 2012 (*Release_Katata*), Stohl et al, 2011 (*Release_Stohl*), Saunier et al, 2013 (*Release_saunier*), Winiarek et al, 2013 (*Release_winiarek*)
- Rain: radar , ECMWF forecast (ECMWF rain)
- Wind fields: ECMWF + obs, ECMWF only (ECMWF wind)

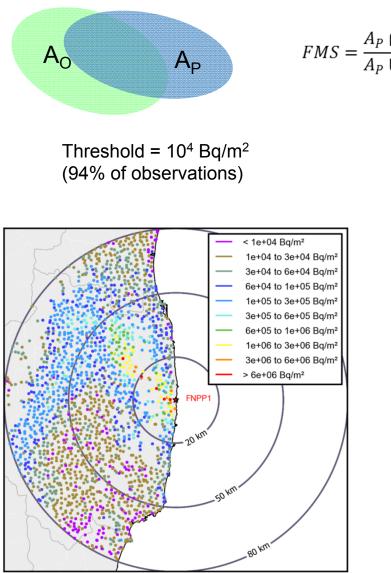
Modeling parameters


- Standard deviations: Pasquill, Briggs rural, Briggs urban, Diffusion constant
- Dry deposition velocity : 2E-3 m/s, 5E-4 m/s (vdmin), 5E-3 m/s (vdmax)
- Dry deposition for iodine I₂: 7E-3 m/s, 1E-3 m/s, 2E-2 m/s
- Wet deposition (Λ₀): 5E-5, 1E-5 (*Imin*), 1E-4 h.s-1.mm-1 (*Imax*)

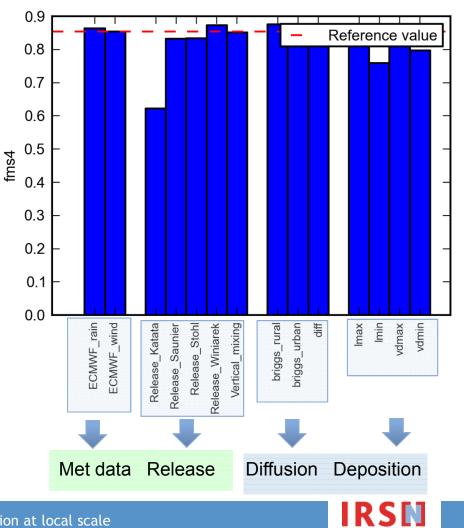
IRS


14

Sensitivity of cumulated deposition of ¹³⁷Cs over land


- > Within a factor 2, except for some source terms
- > Deposition parameters, vertical diffusion (dry dep)
- Compensation between dry and wet deposition: less deposition (vdmin) means more scavenging

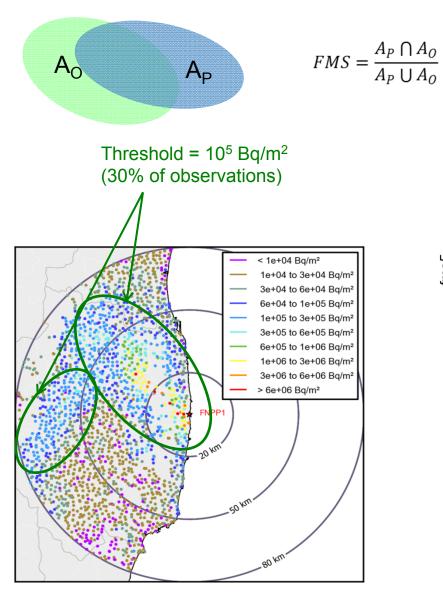
Sensitivity of spatial distribution

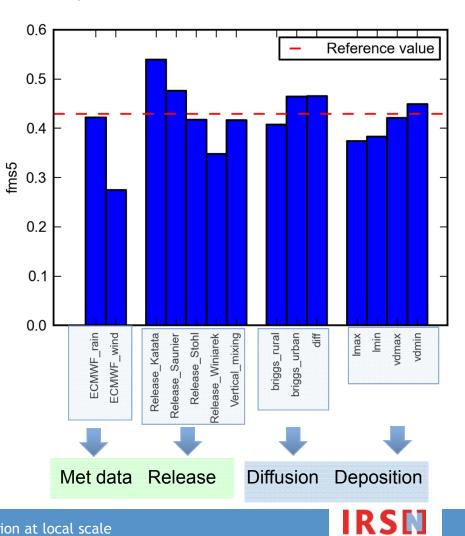

Spatial coverage for a given threshold: figure of merit in space (FMS)

 $FMS = \frac{A_P \cap A_O}{A_P \cup A_O}$

 A_{P} = number of predicted values above threshold

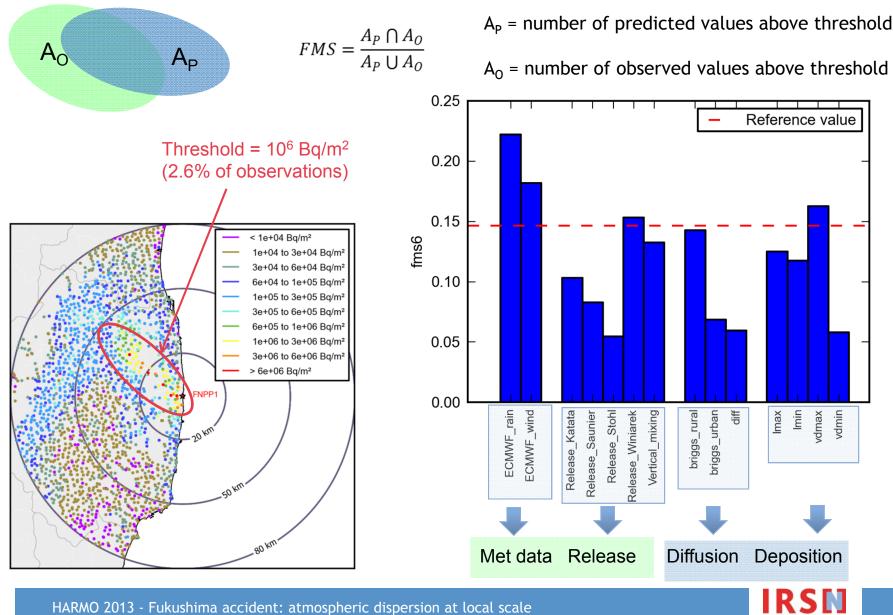
 A_0 = number of observed values above threshold




Sensitivity of spatial distribution

 A_{P} = number of predicted values above threshold

 A_0 = number of observed values above threshold


Spatial coverage for a given threshold: figure of merit in space (FMS)

Sensitivity of spatial distribution

Spatial coverage for a given threshold: figure of merit in space (FMS)

Some answers...

What are the most sensitive parameters ?

For deposition : release++, deposition parameters+, vertical diffusion (for dry deposition), wind direction (for figure of merit in space)

For gamma dose rate: peaks are *very* sensitive to dispersion parameters, meteorology and release height (details in Korsakissok et al (2013), atmospheric environment)

What are the most sensitive results ?

- Deposition dry deposition is more sensitive than wet deposition
- Spatial coverage high values > 10⁶Bq/m² very sensitive
- Gamma dose rate peak values are very sensitive, arrival times very insensitive
- A model can be good on deposition and not on gamma dose rate (or conversely)
- What do we want to reproduce best ?

IRS

Next steps...

Inverse modeling on gamma dose rate measurements

The inverse source term showed here was reconstructed with simulations and measurements at Japan scale: very promising results (Saunier et al, 2013)

Better meteorological data

Still questions: is it the source term or the meteorological data that is at fault ? ...

Several configurations (source term, meteorology) could give acceptable results...

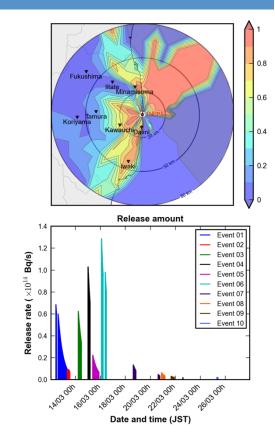
Better modeling

Puff splitting, similarity theory, improving dry deposition/wet scavenging, land-use...
Representativity of the observations ?

Uncertainties and ensemble simulations

Necessity to take into account uncertainties, on input data AND modeling parameters
Ensemble simulations: to get an "envelope" response rather than a deterministic one

Thank you for your attention...


Questions ?

irene.korsakissok@irsn.fr

Acknowledgements

IRSN experts, in particular D. Corbin and J. Denis, for providing the atmospheric release assessment

T FRANCE for providing meteorological data

IRSN

