## Microscale flow simulations over urban configurations including thermal effects

#### <u>J. L. Santiago<sup>1</sup>, E. S. Krayenhoff<sup>2</sup> and A. Martilli<sup>1</sup></u>

 <sup>1</sup> Atmospheric Pollution Division, Environmental Department, CIEMAT, Spain.
 <sup>2</sup> Department of Geography, University of British Columbia, Canada. e-mail: jl.santiago@ciemat.es

Madrid, Spain May, 6-9, 2013





#### Introduction

- Micrometeorology and pollutant dispersion within cities are important for urban climate, air quality and pedestrian comfort.
- Interaction between the atmosphere and urban surfaces:
  - Complex flow patterns within the urban canopy
  - Heterogeneous distributions of temperature and pollutant concentration.





Madrid, Spain May, 6-9, 2013

#### Introduction

- One important physical process: Interaction between heat fluxes from building surfaces and streets and the airflow.
- Thermal effects on flow within the canyon are not taken into account by the majority of microscale studies.
- Most scenarios studied (including thermal effects) to date have only heated one wall of the canyon, or the ground.



## **Objective**

To study the impacts of 'realistic' distributions of heat fluxes from built surfaces on the airflow through a cube array for a range of ratios of buoyancy to dynamical forces.





## **Configuration and Set-up**

- Array of cubes: lambda= 0.25
- Two solar positions (zenith angle 30°). For each solar position different intensities of heat fluxes are studied.
- CFD simulation using realistic distribution of sensible heat fluxes for each scenario is introduced with high resolution.



## **Configuration and Set-up**

- Microscale simulation:
- **RANS model with** k- $\varepsilon$  turbulent closure.
- Mesh:
  - o Resolution: *h*/16
  - Prism layer close to building walls and ground.
- Periodic domain at horizontal directions
- Boundary conditions:
  - o Building and ground: standard wall functions.
  - At the top of the domain (4*h*):
    - a downward flux of momentum  $\rho u_{\tau}^{2}$  in the Xmomentum equation is imposed to maintain the flow.
    - Concerning temperature boundary conditions at the top, a *Tref* is fixed allowing a flux equals to

 $k_{e\!f\!f}\left(T_{ref}-T
ight)/\Delta z$ 

where *keff* is the effective thermal conductivity.

Madrid, Spain May, 6-9, 2013



## **Configuration and Set-up**

Boundary conditions for ground and building walls: Microscale 3-D urban energy balance model



- Temperatures of Urban Facets in 3-D (TUF3D) calculates radiative exchange and surface temperature at the patch/sub-facet scale in 3-D.
- The model assumes radiation is the primary driver of the surface temperature distribution.
- TUF3D compares well with surface temperature measurements from Vancouver and Basel.

Krayenhoff E.S. and Voogt J.A. (2007) A microscale three-dimensional urban energy balance model for studying surface temperatures. *Boundary-Layer Meteorol.* 123, 433-461.

Madrid, Spain May, 6-9, 2013





## **Cases studied**

- **Two different solar position (30<sup>o</sup>)**
- For each solar position different heat flux intensity.  $(h/L_{urb})$ . Analogy with Monin-Obukhov length.  $u^{3}$

$$u_{rb} = \frac{u_{\tau}}{\left(\frac{g}{T_{ref}}\frac{Q_{h}}{\rho C_{p}}\right)}$$

$$h/L_{urb} = 0, 0.4, 0.75, 1.13, 1.5, 2.25, 3$$

- Two simulations with the same h/L<sub>urb</sub> provides equivalent results (*checked*)
- **Normalization of velocity with**  $u_{\tau}$
- Normalization of temperature:

$$Q_h/
ho C_p$$

$$\mathcal{U}_{\tau}$$

Madrid, Spain May, 6-9, 2013





 $u_{\tau}$ : related with downward flux of momentum  $\rho u_{\tau}^2$  in the X-momentum equation imposed to maintain the flow. *Qh*: is the total heat flux (W m-2) from all urban surfaces,  $\rho$ : is the density of air, *Cp*: is the specific heat of air, and *Tref*: is a reference temperature (in this case *T* at the top of domain is considered)





#### Microscale properties (Temperature normalized)



#### Microscale properties (Temperature normalized)



#### Microscale properties (Temperature normalized)



- □ CFD → High resolution information → Numerical domain cannot cover the whole city
- Mesoscale models → Urban Canopy Models (compromise between simplicity and accuracy) to parameterize processes at smaller scale than mesoscale resolution (i.e. parametrization of drag forces induced by buildings).



**Flow** 



Madrid, Spain May, 6-9, 2013





## $\Box \quad \text{Temperature } (\Delta T = T - T_{topdomain})$



Note:  $\Delta T$  maps,  $Q_h$  varies while  $u_{\tau}$  is kept constant.

Madrid, Spain May, 6-9, 2013







Note: In the normalization  $\Delta T$  is divided by  $Q_h$ .

Madrid, Spain May, 6-9, 2013





Root Mean Square Differences are calculated for average streamwise velocity profiles, with the neutral case (Qh = 0) as reference.



Madrid, Spain May, 6-9, 2013





#### Drag Coefficient (Urban canopy model)



$$\overrightarrow{Drag}(z) = -\rho S(z)C_d \left| U \right| \vec{U}$$

**o** S(z) is the vertical surface building density (facing the wind),  $C_d$  is drag coefficient.

$$C_{deq} = \frac{\int_{0}^{H} \Delta P dz}{\rho \int_{0}^{H} U^{2} dz}$$

 Drag force integrated in the whole canopy is equal to that computed by RANS simulations.

Madrid, Spain May, 6-9, 2013





## **Summary and Conclusions**

- Scenarios with realistic heat fluxes imposed at the ground and at the roof and walls of buildings are simulated by a CFD model.
- Two solar positions and different intensities of heat fluxes (variation of *h/Lurb*) for each position are simulated.

$$L_{urb} = \frac{u_{\tau}^{3}}{\left(\frac{g}{T_{ref}}\frac{Q_{h}}{\rho C_{p}}\right)}$$

- □ For both solar position for  $h/Lurb \ge 1.13$  flow pattern changes notably respect to neutral case. Different flow regimes.
- Different flow regimes depending on solar position (for the same h/Lurb), especially for  $h/Lurb \ge 1.13$ .
- Differences in temperature maps inside the canyons. Location of the maximum at different side of the street.

Madrid, Spain May, 6-9, 2013





### **Summary and Conclusions**

- Variation of spatially average velocity and temperature profiles with *h/Lurb*.
- Spatially average velocity and temperature profiles are similar for both solar position for the same h/Lurb.
- Drag coefficient (*Cdeq*) useful for urban canopy models (UCP).
  - Cdeq similar to neutral case for  $h/Lurb \le 0.75$ .
  - Cdeq increases substantially for  $h/Lurb \ge 1.13$  (high buoyancy force)  $\rightarrow$  this effect should be important to include in parameterization of drag in UCP.
- In future work, cases with different solar angles will be analysed in order to generalise these results.

Madrid, Spain May, 6-9, 2013





# Thank you for your attention

Madrid, Spain May, 6-9, 2013



