

KU LEUVEN

Effect of wind fluctuations on near-range atmospheric dispersion under different types of thermal stratification

Lieven Vervecken^{1,2}, Johan Camps¹, Johan Meyers²

¹ SCK•CEN, Belgian Nuclear Research Centre, Belgium ² Department of Mechanical Engineering, KU Leuven, Belgium

> HARMO 15 Madrid, May 7, 2013

> > Copyright © 2013 SCK•CEN

Introduction

- Near range dispersion
 - Effect of pollutant on people living/working close to release point
 - Gaussian models (often) unstatisfactory
 - Computational Fluid Dynamics (CFD) using RANS or LES
 - \rightarrow Start with open field

Mean-wind simulation

[Vervecken et al.. 2013]

- Centerline concentration strongly overestimated
- Lateral spreading underestimated
- \rightarrow Incorporate effects of variable wind conditions
 - Neutral conditions
 - Thermally stratified = This work

Content

- 1. Introduction
- 2. Wind direction fluctuation
- 3. Dispersion model
- 4. Results

Instant wind direction

Reynolds averaging

 $u = \langle u \rangle + u'$ $\langle u \rangle = (\langle u \rangle, \langle v \rangle, \langle w \rangle)$ $\langle u' \rangle = (\langle u' \rangle, \langle v' \rangle, \langle w' \rangle) = 0$

• For our purpose: select the coordinate system such that

$$\langle v \rangle = \langle w \rangle = 0$$

Wind variability

[Vervecken et al.. 2013]

Presume the fluctuating velocity can be split

- 1. Internally represented in the CFD $(_m)$
- 2. Large-scale part that is not represented $(_{e})$

$$u = \langle u \rangle + u'_m + u'_e$$

$$v = v'_m + v'_e$$

$$\Downarrow$$

$$\alpha = \arctan\left(\frac{v'_m + v'_e}{\langle u \rangle + u'_m + u'_e}\right) \approx \frac{v'_m + v'_e}{\langle u \rangle}$$

Modeled wind angle

$$\alpha = \frac{v'_m + v'_e}{\langle u \rangle}$$
$$\langle \alpha^2 \rangle = \frac{\langle v'^2_m \rangle + 2 \langle v'_m v'_e \rangle + \langle v'^2_e \rangle}{\langle u \rangle^2}$$
$$\approx \frac{\langle v'^2_e \rangle}{\langle u \rangle^2} + \frac{\langle v'^2_m \rangle}{\langle u \rangle^2} = \sigma_e^2 + \sigma_m^2$$

 $\langle \alpha \rangle = 0$ by construction $\langle \alpha^2 \rangle = \sigma_{\alpha}^2$ the measured variance

Level 2 model of Mellor and Yamada (1982)

$$\Rightarrow \sigma_m^2 = \frac{\langle v_m'^2 \rangle}{\langle u \rangle^2} \approx \gamma_1 \left(\frac{u_\tau}{\phi_M S_M} \right)^2$$

Additional boundary condition

- Include wind variability
 - Assume normal distribution
 - Finite number of intervals
 - Weigh solution with interval probability

Transport of a non-buoyant, passive scalar

$$\nabla . \left(\langle \boldsymbol{u} \rangle \langle \boldsymbol{c} \rangle \right) = \nabla . \left(D \nabla \langle \boldsymbol{c} \rangle - \langle \boldsymbol{u}' \boldsymbol{c}' \rangle \right) + \left\langle S_p \right\rangle$$

Monin-Obukhov similarity theory

Velocity profile

$$u = \frac{u_{\tau}}{\kappa} \left[\ln \left(\frac{z}{z_0} \right) - \psi_M \right]$$

Turbulent mass flux

$$-\langle \boldsymbol{u}' \boldsymbol{c} \rangle \approx \frac{u_{\tau} \kappa z \left(1 - \frac{z}{\delta}\right)}{S c_t \phi_M}$$

Normalization

$$C^+ = \langle c \rangle \frac{UL^2}{r}$$

[e.g. Stull, 1988] [Garrat and Pielke, 1988]

Project Prairie Grass

- 70 experiments from 1956
- 10-min sampling of tracer (SO₂)
- Release at 46 cm and 150 cm
- Concentration measured on 5 arcs and 6 towers

Computational setup

$$\sigma_{\alpha}^2 = \sigma_e^2 + \sigma_m^2$$

- Three models ($Sc_t = 0.9$)
 - $\sigma_e = 0$: Mean-wind RANS
 - $\sigma_m = 0$: σ_α -RANS
 - $\sigma_{\alpha} \neq \sigma_e : \sigma_e$ -RANS
- Stability class based on σ_{α} [e.g., Zanetti, 1990]
- All experiments except for
 - Insufficient data

•
$$U_{2m} < 2\frac{m}{s}$$

• $\sigma_{\alpha} > 17.5^{\circ}$

SCK•CEN

Statistical performance measures

Performance measure		Exact	Tolerable [Hanna, 2004]
FB	$\frac{\langle C_o \rangle - \langle C_p \rangle}{0.5(\langle C_o \rangle + \langle C_p \rangle)}$	0.0	-0.3 < FB < 0.3
MG	$\exp\bigl(\langle \ln C_o \rangle - \langle \ln C_p \rangle\bigr)$	1.0	0.7 < MG < 1.3
NMSE	$\frac{\left\langle \left(C_o - C_p\right)^2\right\rangle}{\langle C_o \rangle \langle C_p \rangle}$	0.0	NMSE < 4.0
VG	$\exp\left(\left\langle \left(\ln C_o - \ln C_p\right)^2\right\rangle\right)$	1.0	VG < 1.6
FAC2	fraction $0.5 \le \frac{C_p}{C_o} \le 2.0$	1.0	FAC2 > 0.5
FAC10	fraction $0.1 \le \frac{C_p}{C_o} \le 10.0$	1.0	

 C_o = Observed concentrations C_p = Predicted concentrations

Centerline measurements

		FB	MG	NMSE	VG	FAC2	FAC10
		-0.3 < FB < 0.3	0.7 < MG < 1.3	< 4	< 1.6	> 0.5	-
unstable	mean-wind	-1.295	0.104	6.483	168.7	0.000	0.500
	σ_{α} -RANS	0.356	0.889	1.148	1.014	0.767	0.967
	σ_e -RANS	0.293	0.835	0.968	1.033	0.767	0.967
neutral	mean-wind	-1.176	0.150	4.446	36.73	0.010	0.750
	σ_{α} -RANS	0.190	0.931	0.349	1.005	0.875	1.000
	σ_e -RANS	0.004	0.781	0.196	1.063	0.837	1.000
stable	mean-wind	-0.569	0.444	0.786	1.931	0.436	1.000
	σ_{α} -RANS	0.518	1.904	0.691	1.514	0.615	1.000
	σ_e -RANS	-0.264	0.757	0.349	1.080	0.855	1.000

- ' σ_e -RANS' meets model acceptance criterion
- With all points: significant improvement of lower concentrations

References

- Barad, M.L., 1958: Project Prairie Grass, A Field Program in Diffusion. *Geophysical Research Papers* No. 59, vols. I and II. Air Force Cambridge Research Center. Rep. Technical Report. AFCRC-TR-58-235.
- Chang, J.C. and S.R. Hanna, 2004: Air quality model performance evaluation. *Meteorology* and Atmospheric Physics, **87**, 167-196.
- Garrat J. and R.A. Pielke, 1989: On the sensitivity of Mesoscale Models to surface-layer parameterization constants. *Boundary-Layer Meteorol.*, **48**, 377-387.
- Mellor, G.L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. *Reviews of geophysics and space physics*, **20**(4), 851-875.
- Stull, R.B., 1988: An introduction to boundary layer meteorology, Vol. 13, Kluwer Academic Pub, 666 pp.
- Vervecken, L., J. Camps and J. Meyers, 2013: Accounting for wind-direction fluctuations in Reynolds-averaged simulation of near-range atmospheric dispersion. *Atmospheric Environment*, **72**, 142-150, doi:10.1016/j.atmosenv.2013.03.005.
- Zannetti, P., 1990: Air Pollution Modeling. Theories, Computational Methods and Available Software. Computational Mechanics Publications, 444 pp.

Summary

- New simulation boundary condition
 Account for 'external' wind fluctuations
- Transport of non-buoyant, passive scalar
 - Advection-diffusion equation
 - Monin-Obukhov similarity theory
- Simulation of Prairie Grass experiments
 - Simulations improve significantly
 - Reproducing centreline concentrations
 - Improving estimation of lower concentrations