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Introduction

ADMS Urban is an air quality static model at urban scale.

Input vector p ∈ RK : meteorological variables, background
concentrations, hour of the day, Julian day.

p varies from one simulated hour to the next.

High-dimensional output concentration vector y =M(p).

But a full-year simulation of NO2 concentrations over a city can take
dozens of days of computation!

Objective

Replace ADMS Urban with an emulator.

Principle

y is first projected onto a reduced subspace.

The relations between the projection coefficients and the input
vector p are then emulated.
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Dimension reduction

A reduced basis [Ψ1 . . .ΨN ] must represent the variability of the
concentration field and is determined by Principal Component
Analysis over a training period.

In practice just few principal components are enough to provide a
good approximation.

y '
N∑
j=1

αjΨj

where αj = yTΨj projection coefficient on j-th principal component.
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Case study

The application is the simulation of NO2 concentrations every 3 hours
across the city Clermont-Ferrand (France) for the full year 2008.

Input variables p contains K = 10 components.

5 meteorological input scalars from a meteorological station: wind
speed, the wind direction, the temperature, the cloud coverage and
the rain intensity.

3 background concentrations for NO2, NOx and O3.

2 emission variables: emissions vary according to the Julian day and
the hour of the day (spatial distribution of the emissions and
emissions factors are part of the model).
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Dimension reduction

We applied the principal component analysis to the full year 2008.

Unexplained variance over the full year against the size of the
projection basis N:

0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

99% of the total variance with only N = 8 principal components.

y '
8∑

j=1

αjΨj
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Ψ1 and Ψ3: effects of mean emissions and wind from south.

Scores

The simulation over the full year 2008 is compared to its projection on 8
principal components.

Mean Bias Corr. RMSE Rel. RMSE
µgm−3

µgm−3 % µgm−3 %

23 0 99 2.37 10
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Emulation

Every component fj(p) =M(p)TΨj is replaced by a statistical emulator

f̂j whose computational cost is negligible.

M training samples fj(p
(i)) by latin hypercube sampling.

The emulator in p is made of two parts:

f̂j(p) =
K∑

k=1

βj ,kpk︸ ︷︷ ︸
Regression

+
M∑
i=1

wj ,i (p, . . . , p
(M))

(
fj(p

(i))−
K∑

k=1

βj ,kp
(i)
k

)
︸ ︷︷ ︸

Interpolation of the residuals

Interpolation of the residuals:

Interpolation with radial basis functions.
Mean of the closest neighbors.
Kriging (computationally intensive).
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Case study

The components αj = yTΨj of the projection are emulated, and the
emulator is applied over a full year.

Emulation

M = 2000 samples to build the 8 emulators.

Linear regression.

Interpolation of residuals : radial basis function (Python module
Scipy).

Scores

Bias Corr. RMSE Rel. RMSE
µgm−3 % µgm−3 %

Radial basis functions −0.2 90 6.7 30
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Comparison of ADMS Urban and the RBF emulator

200 frames over the year 2008

Demonstration of the RBF emulator
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Conclusion

The dimension reduction needs a 6-month simulation.

Building the complete emulator requires the equivalent of a
8-month simulation.

Then the prediction for any p is essentially instantaneous!

Perspectives

Improve the interpolation part of the emulator, with error control:
inverse distance weighting or even kriging.

Generate an ensemble of simulations for uncertainty quantification
(Monte Carlo simulation).

Operational air quality forecast: Urban Air System by Numtech.

Impact studies: focusing on yearly or monthly averages.

All the new methods that were previously out of reach because of
the computational cost of the model!
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f̂j(p) =∑K
k=1 βj ,kpk +

∑M
i=1 wj ,i (p, . . . , p

(M))
(
fj(p

(i))−
∑K

k=1 βj ,kp
(i)
k

)
Let the residual be rj(p) = fj(p)−

∑K
k=1 βj ,kpk , and the emulated

residual be r̂j(p) = f̂j(p)−
∑K

k=1 βj ,kpk

r̂j(p) =
∑M

i=1 αj ,id(p, p(i)) where d is a distance, here d is a metric
in K dimensions.

We want to obtain the exact value at training points:
r̂j(p

(k)) = rj(p
(k)) =

∑M
i=1 αj ,id(p(k), p(i))

We denote ∆j the matrix whose element (k , i) is d(p(k), p(i)), and
Dj(p) the vector whose ith component is d(p, p(i))

We get: αj = ∆−1
j Rj if Rj = (rj(p

(1)), . . . , rj(p
(M)))T

Note that r̂j(p) = αT
j Dj(p) = RT

j ∆−1
j Dj(p) = DT

j (p)∆−1
j Rj

We therefore obtain: wj(p) = DT
j (p)∆−1

j .

Anne Tilloy Reduction and Emulation of ADMS Urban 11/11


