

Centro de Investigaciones Energéticas, Medioambiental y Tecnológicas

SPATIAL REPRESENTATIVENESS OF RURAL BACKGROUND MONITORING STATIONS IN SPAIN

<u>Fernando Martín</u>, Lorenzo Fileni, Inmaculada Palomino, Marta G. Vivanco and Juan L. Garrido

Atmospheric Pollution Division. CIEMAT, Madrid, Spain

May 6-9, 2013

HARMO15, Madrid, Spain

Centro de Investigaciones Energéficas, Medioambiental y Tecnalógicas

Outline

- Introduction
- Objectives
- Methodology
- Results
- Conclusions

Introduction (1)

- Pollutant concentration data measured at monitoring stations needed for air quality assessment.
- How representative is a station?
- Spatial representativeness (SR) influenced by:
 - topography or obstacles,
 - air flows,
 - distribution of pollution sources,
 - averaging time and pollutant type.
- Methods for estimating the SR area of a station try to find out:
 - how the pollution is distributed around the station
 - which is the area where pollutant concentrations do not differ more than a certain percentage of measured one at the station site.

May 6-9, 2013

Introduction (2)

- Methods to estimate SR:
 - Measurement campaigns with many passive samplers distributed around station.
 - Advantage: Cheap, good pollution map.
 - Disadvantage: Only long term concentration averages.
 - Surrogate indicators related to emission sources distribution, but the effect of transport and dispersion of pollutants is not estimated.
 - Climatic-topographic criteria, recommended specially for rural background stations.
 - Air quality models.
 - Advantage: Effects of the emission sources distribution and atmospheric pollutant processes taken into account → quite realistic pollution map.
 - Disadvantage: Computational burden. May 6-9, 2013 HARMO15, Madrid, Spain

Objectives

- <u>To estimate the SR area of the rural background (RB)</u> <u>stations</u> based on the analysis of the pollutant concentration distribution around the stations in the lberian Peninsula and Balearic Islands obtained from annual WRF-CHIMERE model simulations combined with measurements of air quality stations for three years (2008-2010).
- The resulted SR areas are analysed and discussed:
 - size distribution
 - interannual variability
 - station redundancy
 - network coverage

Methodology

- Analysis of the annual maps of pollutant concentrations of SO₂, O₃, NO₂ and PM₁₀ for three years (2008-2010) computed routinely for annual air quality assessment in Spain.
- Maps obtained from annual simulations with the WRF-CHIMERE model system combined with measurements at air quality stations.

	Annual mean	Daily limit value (daily average)	Hourly limit value (hourly average)	Target value (8-hour average)	Information threshold (hourly average)			
SO ₂	Yes	4 th upper value	25 th upper value	No	No			
O ₃	No	No	No	26 th upper value	Maximum value			
NO ₂	Yes	No	19 th upper value	No	No			
PM ₁₀	Yes	36 th upper value	No	No	No			
May 6-9, 2013 HARMO15, Madrid, Spain 6								

Modeling scheme

SR delimiting criteria

- Criteria for delimiting representativeness area are based on:
 - Concentration does not vary more than a certain percentage or factor (F) of the concentration at the station,
 - Concentration in the SR falls in the same air quality assessment classification (assessment thresholds, limits values).
 - Maximum SR area is a circle of 200 km of radius around the station (area of 125664 km²). Directive EC 2008/50 states one rural background station per 100000 km².
- Procedure:
 - 1. Several concentration bins were set up for every pollutant and air quality standard (related to LV, TV, UAT, LAT).
 - When station concentration falls in a bin, limits of concentration interval to comparison with concentrations around station are computed by applying factor F (1.2) to concentration at station site.
 - SR area of a station will contain all the surrounding grid cells (10x10 Km) in circle of 200 km of radius with concentrations falling into interval.

May 6-9, 2013

Setting concentrations intervals

- C_{Bi} = bin limits (related to LV, TV, UAT, LAT)
- C_s = concentration at station
- F = factor for setting intervals (1.2 or 2.0 for very low concentrations)

Table 2. Criteria for delimiting the SR of the RB stations for every pollutant and air quality standard I = bins of concentrations (μ gm⁻³), F = factor applied to set the concentration interval respect to the reference concentration at the station, and L = limits (μ gm⁻³) applied to the upper and lower values of the intervals for each concentration bin.

1	Averaging	SO ₂			0	3		NC	NO ₂		PM ₁₀		
1	time	I	F	L	I	F	L	I	F	L	I	F	L
	Annual	<4	2	max≤4				<13	2	max≤13			
	mean	≥4	1.2	min≥4				≥13	1.2	min≥13	<20	1.2	max≤20
		<8		max≤8				<26		max≤26			
		≥8	1.2	min≥8				≥26	1.2	min≥26	≥20	1.2	min≥20
		<12		max≤12				<32		max≤32	<28		max≤28
		≥12	1.2	min≥12				≥32	1.2	min≥32	≥28	1.2	min≥28
		<20		max≤20				<40		max≤40	<40		max≤40
		≥20	1.2	min≥20				≥40	1.2	min≥40	≥40	1.2	min≥40
the second	Daily	<25	2	max≤25									
1.000	average	≥25	1.2	min≥25							<25	1.2	max≤25
		<50		max≤50									
		≥50	1.2	min≥50							≥25	1.2	min≥25
		<75		max≤75							<35		max≤35
		≥75	1.2	min≥75							≥35	1.2	min≥35
		<125		max≤125							<50		max≤50
		≥125	1.2	min≥125							≥50	1.2	min≥50
	Hourly	<70	2	max≤70	<90	1.2	max≤90	<50	2	max≤50			
	average	≥70	1.2	min≥70	≥90	1.2	min≥90	≥50	1.2	min≥50			
		<140		max≤140	<135		max≤135	<100		max≤100			
		≥140	1.2	min≥140	≥135	1.2	min≥135	≥100	1.2	min≥100			
		<210		max≤210	<180		max≤180	<140		max≤140			
		≥210	1.2	min≥210	≥180	1.2	min≥180	≥140	1.2	min≥140			
		<350		max≤350	<210		max≤210	<200		max≤200			
		≥350	1.2	min≥350	≥210	1.2	min≥210	≥200	1.2	min≥200			
					<240		max≤240	<400		max≤400			
					≥240	1.2	min≥240	≥400	1.2	min≥400			
	8-hour				<84	1.2	max≤84						
	average				≥84	1.2	min≥84						
					<108		max≤108						
					≥108	1.2	min≥108						
- 1					<120		max≤120						
					≥120	1.2	min≥120						
ay 6 ^{nplet}	a				<180		max≤180						
					≥180	12	min>180						

Centro de Investigaciones Energéticas, Medioambientale y Tecnalógicas

Results

- The SR area of the RB stations was estimated for each of the three years (2008, 2009 and 2010).
- The multiyear SR area can be estimated computing the intersection of the yearly SR areas.

SR size (1)

Bins of grid cell (10x10 km²) numbers are 0-75, 75-300, 300-700 and 700-1300.

SR size (2)

Bins of grid cell (10x10 km²) numbers are 0-75, 75-300, 300-700 and 700-1300.

SR size (3)

Bins of grid cell (10x10 km²) numbers are 0-75, 75-300, 300-700 and 700-1300.

- Large SR areas are more frequent for hourly and daily SO₂, hourly O₃ and annual NO₂.
- More small or medium SR areas for PM₁₀ and 8hourly averages of O₃.
- Generally, the SR areas ranging from 300 to 700 grid cells are less frequent.

Interannual variability (1)

 Interannual variability of the SR areas has been analysed by computing a persistence index P defined by:

$$P = \min\left[\frac{SR_T}{SR_Y}\right]$$

- SR_{Y} = SR area of a station for a year Y (2008, 2009 or 2010)
- SR_T = multiyear SR area of the same station.
- $P \in [0, 1]$, P=0 \rightarrow no persistency, P=1 \rightarrow same SR all years.

_		SO ₂			O ₃		NO ₂		И ₁₀
F	annual	daily	hourly	8-hour	hourly	annual	hourly	annual	daily
0.0 - 0.3	23	8	7	34	21	14	21	22	20
0.3 - 0.7	10	7	8	29	11	12	16	17	22
0.7 - 1.0	11	29	29	8	39	27	16	3	0
Total	44	44	44	71	71	53	53	42	42
May 6-9, 2013 HARMO15, Madrid, Spain							17		

Interannual variability (2)

Station redundancy (1)

- Redundancy → two or more stations are representative of the same portion of territory.
- Q factor = ratio between the common area of two stations and the total area covered by both stations (percentage of redundancy between two stations).

$$Q = I_{ab} / (N_a + N_b - I_{ab})$$

- I_{ab} = number of cells in common between SR of two stations (A, B)
- N_a = number of cells in SR of station A
- N_b = number of cells in SR of station B
- Q ∈ [0, 1]
- Q=0 means no common SR area,
- Q=1 means that the two stations are totally coincident.

Centro de Investigaciones Energéticas, Medioambiental y Tecnológicas

Station redundancy (2)

Q>0.5	NO ₂	NO ₂	O ₃	O ₃	PM ₁₀	PM ₁₀	SO ₂	SO ₂	SO ₂
Intersections	annual	hourly	8-hourly	hourly	annual	daily	annual	daily	hourly
0	32	28	27	14	27	27	35	17	16
1	5	14	21	15	14	12	2	5	7
2	3	6	0	4	1	3	3	4	5
3	6	2	5	4			4	2	3
4	5	3	2	3				13	6
5	1		3	15				1	1
6	1		4	3				3	5
7			3	0					1
8			3	2					
9			0	4					
10			1	1					
11			2	3					
12				2					
13				1					
<u>Total</u>	53	53	71	71	42	42	44	44	44
May 6-9, 2013	1. 1. 1. 1.		HARMO	15, Madri	d, Spain				20

Centro de Investigaciones Energéficas, Medioambiental y Tecnológicas

Station redundancy (3)

Q>0.8	NO ₂	NO ₂	O ₃	O ₃	PM ₁₀	PM ₁₀	SO ₂	SO ₂	SO ₂
Intersections	annual	hourly	8-hourly	hourly	annual	daily	annual	daily	hourly
0	41	42	39	30	36	35	41	32	35
1	8	8	20	18	6	4	0	3	2
2	4	3	4	8		3	3	8	5
3			2	3				1	2
4			4	11					
5			2	1					
Total	53	53	71	71	42	42	44	44	44

Station redundancy (5)

• Examples of stations with Q > 0.8

Centro de Investigaciones Energéticas, Medioambientak y Tecnológicas

Station redundancy (5)

Q = 1	O ₃	O ₃	PM ₁₀	PM ₁₀
	8-hourly	hourly	annual	daily
	3	2	1	3
Names of RB stations	ParcBit / Hospital	Matalascañas / Doñana	Orusco / Villa_ De	Ctcc-Fun / Ctcc-Arg
Names of RB stations	SanMart / Villade	Tona-zoe / BH Tona		Ctcc-Tud / Ctcc-Arg
Names of RB stations	Orusco / Villarej			Ctcc-Tud / Ctcc-Fun

May 6-9, 2013

Centro de Investigaciones Energéficas, Medioambiental y Tecnológicas

Network coverage (1)

NO₂ annual

NO₂ hourly

O₃ hourly

Network coverage (2)

O₃8-hourly

May 6-9, 2013

HARMO15, Madrid, Spain

Network coverage (3)

PM₁₀ annual

27

SO₂ hourly

Network coverage (4)

SO₂ annual

May 6-9, 2013

HARMO15, Madrid, Spain

Conclusions

- Methodology to estimate spatial representativeness (SR) of rural background (RB) stations using maps from combination of modeling and monitoring.
- Great variability of SR sizes and shapes.
- For same station, different SR depending on pollutant and averaging time.
- High interannual variability of SR except to daily and hourly SO₂, hourly O₃ and annual NO₂.
- A significant number of stations are redundant especially for O₃.
- The coverage of the AQ station network shows some rural areas not well covered.