

Institute for Defense Analyses

4850 Mark Center Drive, Alexandria, Virginia 22311-1882

15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 6-9 May 2013 Madrid, Spain

The Use of Probabilistic Plume Predictions for the Consequence Assessment of Atmospheric Releases of Hazardous Materials

Nathan Platt, William Ross Kimball II, Jeffry T. Urban

6 May 2013

Hazard Assessment Predictions Capability (HPAC) / Joint **Effects Model (JEM)**

Most AT&D models produce a "mean" plume that represents an ensemble average of many different turbulent realizations of individual plumes.

IDA

- By definition, these mean plumes smooth out concentration fluctuations in time and space
- Second Order Closure Integrated Puff model (SCIPUFF) is a Langrangian Gaussian puff dispersion model that in addition to calculating mean field concentration also calculates concentration variance. HPAC outputs include pair $(\overline{c(\mathbf{x},t)}, c'^2(\mathbf{x},t))$ or $(\overline{d(\mathbf{x})}, \overline{d'^2(\mathbf{x})})$

$$c(\mathbf{x},t) = \overline{c(\mathbf{x},t)} + c'(\mathbf{x},t) \qquad \sigma^2 = Var[c(\mathbf{x},t)] = \overline{c^2(\mathbf{x},t)} - \overline{c(\mathbf{x},t)}^2 = \overline{c'^2(\mathbf{x},t)}$$

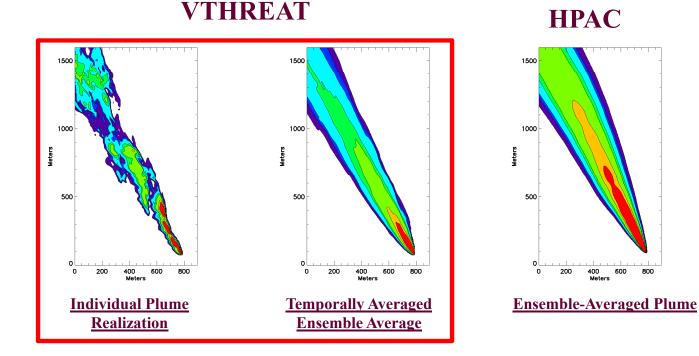
HPAC

200

400

Meters

600



IDA Haber's Law

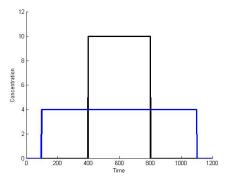
- Most AT&D models calculate toxic effects as a function of only the total dosage of the exposure (Haber's Law).
 - Haber's Law relationships are established empirically for dosages based on constantconcentration exposures:

$$D(\mathbf{x}) = C(\mathbf{x})T$$

 A (unproven) generalization of Haber's Law for time-dependent concentrations defines dosage as:

$$D(\mathbf{x}) = \int_{t_i}^{t_j} c(\mathbf{x}, t) dt$$

 Haber's Law implies that, assuming the same total dosage, both high-concentration short-duration exposures and low-concentration long-duration exposures result in the same toxic effect.



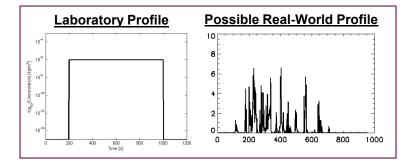
IDA Toxic Load Model

- Early experiments showed that Haber's Law does not hold for some chemicals.
- The toxic effects of these chemicals are better described when the dosage is replaced by a generalized "Toxic Load"

$$TL(\mathbf{x}) = (C(\mathbf{x}))^n T$$

- *n* is the "toxic load exponent," a chemical-dependent parameter determined from exposureresponse data
- The toxic load model is experimentally verified only for constant-concentration exposures
- For n > 1, high-concentration short-duration exposures will produce a stronger toxic effect than low-concentration long-duration exposures.
- Many extensions of this toxic load model have been proposed for time-dependent exposures including ten Berge

$$TL_{TB}(x) = \int c^n(\tau) d\tau = \sum_{i=0}^K c^n(x,t_k) \Delta t$$



 For T&D models that <u>only output ensemble-mean</u> concentration/dosage and CA based on Dosages

 $x \to \overline{c}(t, x) \to D(x) \to Cas(\overline{D}(x))$ Cas(D(x))**Extension to different spatial** This quantity plus an estimate locations could be used for of the variance is actually **Extension to different spatial** hazard area assessment (e.g., locations could be used to desired by users for CA area above specified estimate total casualties threshold)

In addition to expected values (e.g., hazard area or casualties), user might be interested in variances

IDA Dosage Based CA in HPAC

- Question: What kind of dosage based consequence assessment could be calculated in HPAC? How do they compare with each other for a military relevant small chemical attack scenario?
- Given a prescribed threshold level *I* and exposure *d*, let

$$A(d,l) = \begin{cases} 1 & \text{if } d > l \\ 0 & \text{otherwise} \end{cases}$$

 Then, given an exposure function *E* defined at all spatial locations x, define area within contour (or hazard area as) as

Area(E,l) =
$$\int_{\mathbf{x}} A(E(\mathbf{x}), l) d\mathbf{x}$$

IDADosage Based CA in HPAC:IDAPrescribed threshold level I, LCt₅₀ and probit b

Method 1 based on ensemble-averaged dosage

$$Area(\overline{d}) = \int_{\mathbf{x}} A(\overline{d}_{\mathbf{x}}, l) d\mathbf{x} \qquad Cas(\overline{d}) = \int_{\mathbf{x}} \Phi(b \log_{10} \left(\frac{d_{\mathbf{x}}}{LCt_{50}}\right) d\mathbf{x}$$

- Method 2 utilizes ensemble-averaged dosage, dosage variance and assumption that dosages are distributed according to clip-normal distribution *p*_{CN}(τ; μ_x, σ_x)
 - For hazard area calculation

$$E[A(\bullet,l)] = \int_{0}^{\infty} A(\tau,l) p(\tau;\mu_{\mathbf{x}},\sigma_{\mathbf{x}}) d\tau = \int_{l}^{\infty} p_{CN}(\tau;\mu_{\mathbf{x}},\sigma_{\mathbf{x}}) d\tau = \int_{l}^{\infty} N(\tau;\mu_{\mathbf{x}},\sigma_{\mathbf{x}}) d\tau$$
$$E[A(\bullet,l)] = 1 - \Phi(l;\mu_{\mathbf{x}},\sigma_{\mathbf{x}}) = \frac{1}{2} \left[1 - erf\left(\frac{l-\mu_{\mathbf{x}}}{\sigma_{\mathbf{x}}\sqrt{2}}\right) \right] \qquad \boxed{Area(l)} = \frac{1}{2} \int_{\mathbf{x}} \left[1 - erf\left(\frac{l-\mu_{\mathbf{x}}}{\sigma_{\mathbf{x}}\sqrt{2}}\right) \right] d\mathbf{x}$$

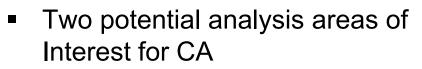
Casualties calculation requires numerical integration

$$\overline{Cas} = \iint_{\mathbf{x}} \int_{0}^{\infty} Cas(\tau) p_{CN}(\tau; \mu_{\mathbf{x}}, \sigma_{\mathbf{x}}) d\tau d\mathbf{x} = \iint_{\mathbf{x}} \int_{0}^{\infty} \Phi(b \log_{10}\left(\frac{\tau}{LCt_{50}}\right) p_{CN}(\tau; \mu_{\mathbf{x}}, \sigma_{\mathbf{x}}) d\tau d\mathbf{x}$$

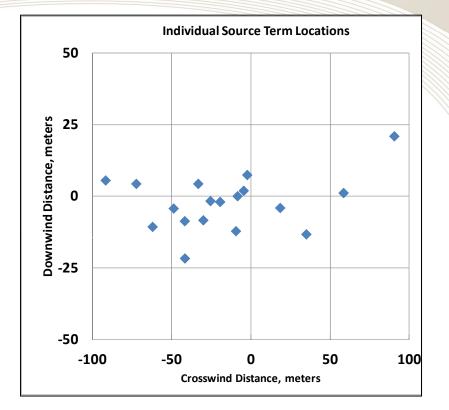
For casualty assessment assume uniform population density set to unity μ_x and σ_x are obtained from *d* and d^2 by numerical inversion of a somewhat complicated equation $\Phi(\bullet)$ denotes cumulative density function for standard normal distribution $\Phi(\bullet; \mu, \sigma)$ denotes cumulative density function for normal distribution with mean μ and standard deviation σ

IDA Small Scale Chemical Attack Parameters

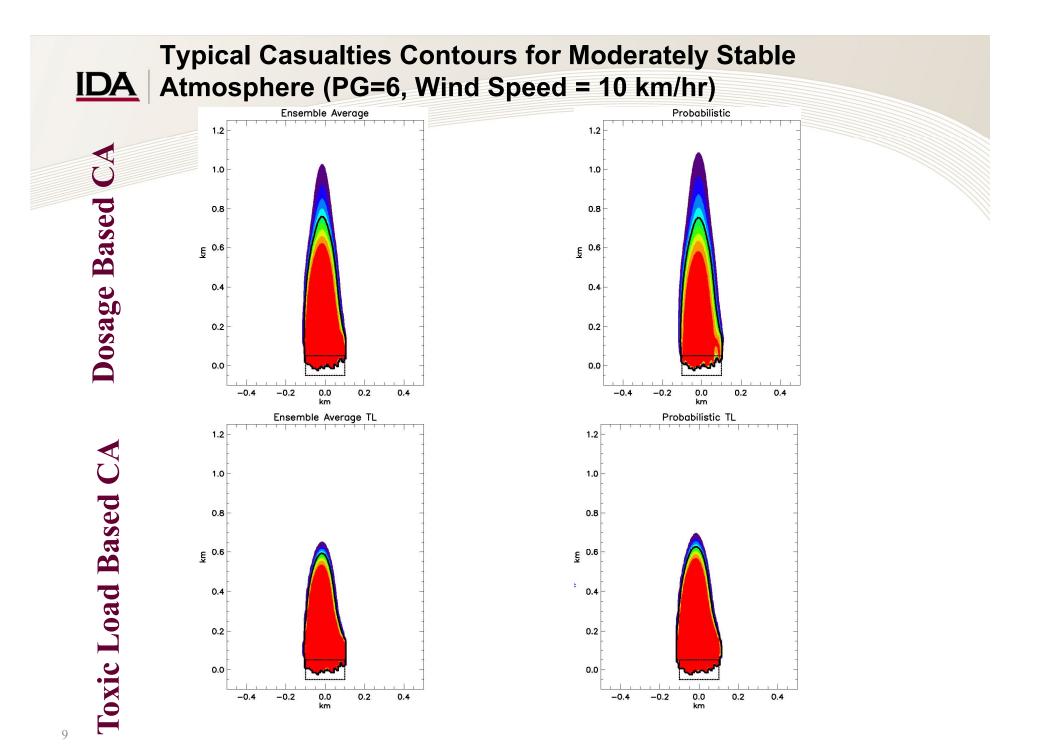
- 18 artillery shells (155mm)
 - Each containing 1.6kg Sarin
- Target zone: 200m x 100m
- Terrain: Urban
- Meteorological conditions:
 - 5, 10, & 15km/hr. winds
 - Moderately Stable (PG6) or Slightly Unstable (PG3) atmosphere
- Population density is assumed to be uniform

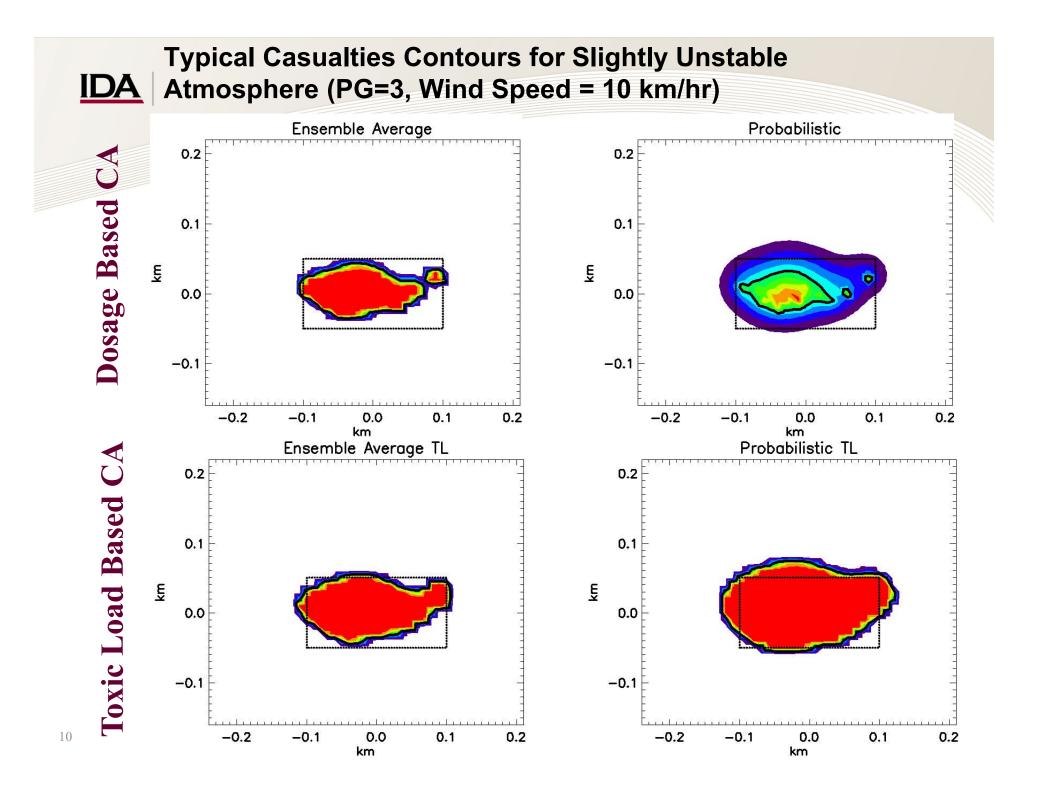


- On-target hazard area/casualties
- Full extent of hazard area/casualties

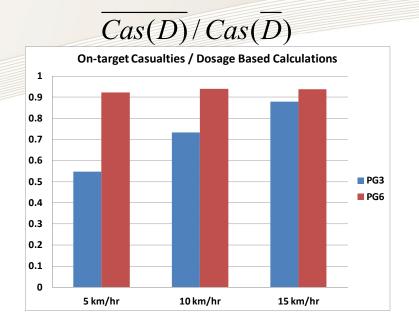


Casualty Calculations Based on Dosage and Toxic Load Model

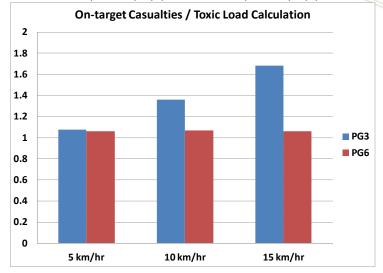




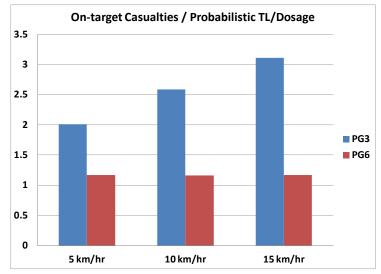
IDA Results for Casualties / On-Target Attack



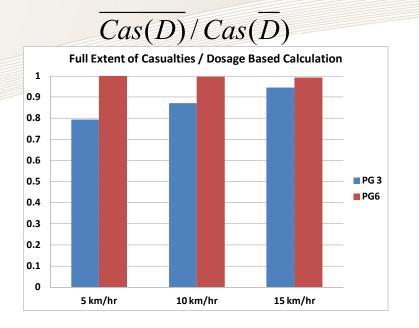
$Cas(\overline{TL(c)})/Cas(TL(c))$



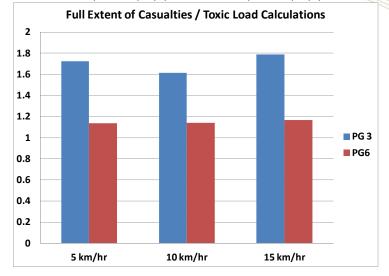
Cas(TL(c))/Cas(D)



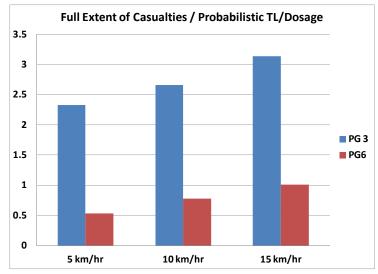
IDA Results for Casualties / Full extent of the plume



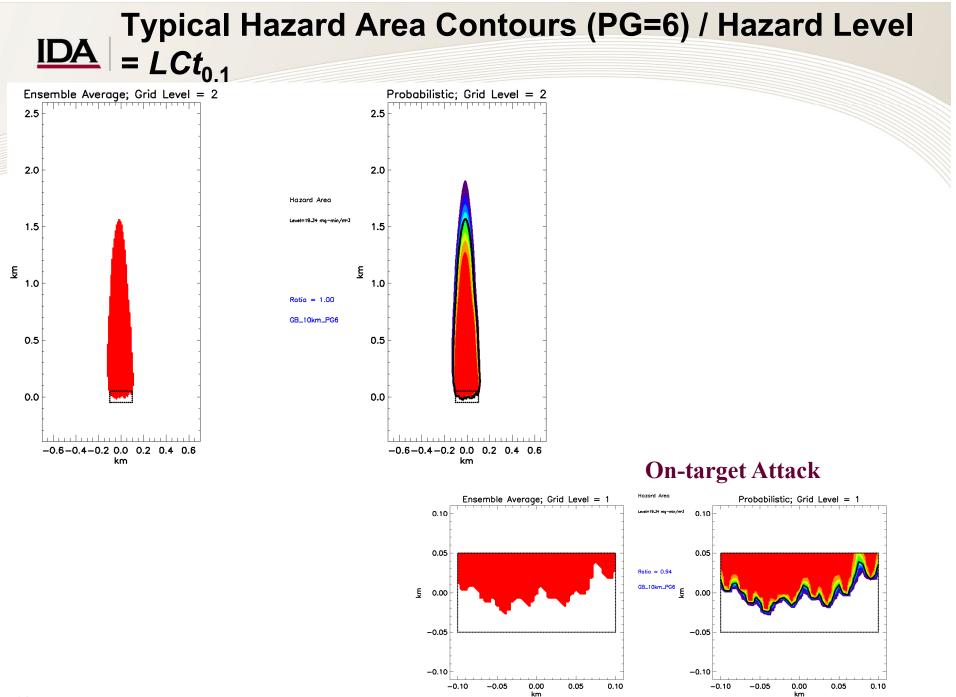
$Cas(\overline{TL(c)})/Cas(\overline{TL(c)})$

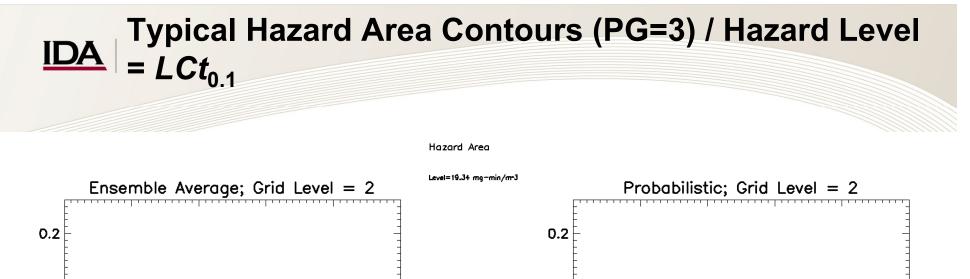


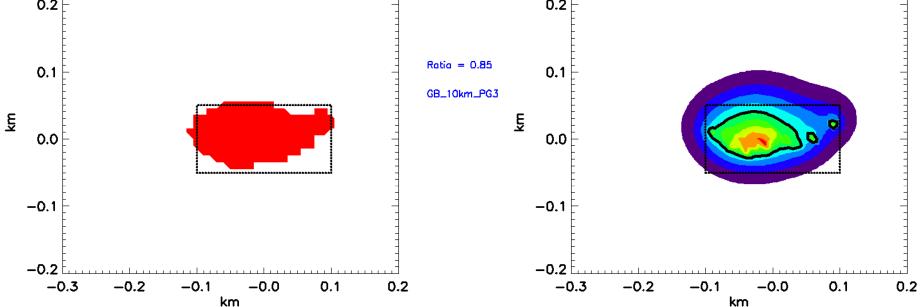
$Cas(\overline{TL(c)})/\overline{Cas(D)}$



Hazard Area Calculations Based on Dosages

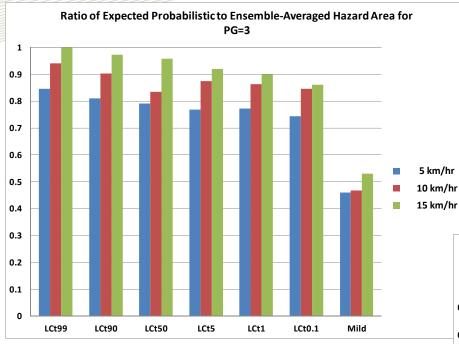




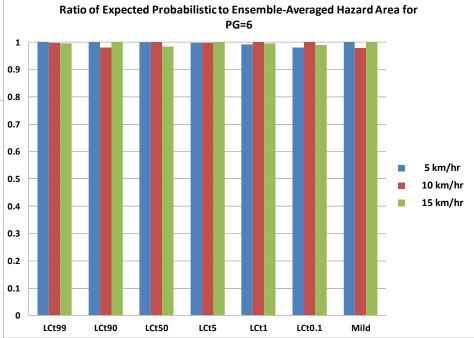


IDA Result for Hazard Area Calculations / Full Extent

Slightly Unstable Atmosphere



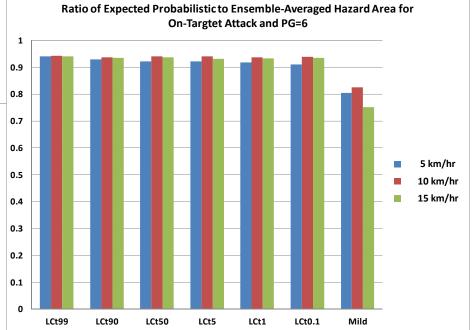
Moderately Stable Atmosphere



IDA Result for Hazard Area Calculations / On-Target

Slightly Unstable Atmosphere Ratio of Expected Probabilistic to Ensemble-Averaged Hazard Area for **On-Targtet Attack and PG=3** 1 0.9 0.8 0.7 0.6 5 km/hr 0.5 10 km/hr 15 km/hr 0.4 0.3 0.2 0.1 0 LCt99 LCt90 LCt50 LCt5 LCt1 LCt0.1 Mild

Moderately Stable Atmosphere



IDA Summary

- Some care should be exercised when using HPAC for both dosage and toxic load based consequence assessment
 - Two methods to do CA within HPAC/JEM
 - Based on ensemble-averaged dosage or concentration + toxic load
 - Based on full probabilistic dosage/toxic load exposure utilizing ensemble-averaged dosage/concentration, variance and assumption of a clip-normal distribution
- For single small scale chemical attack and limited parametric variations (e.g., three wind speeds and two atmospheric stability categories) considered here
 - Moderately stable atmospheric conditions yields comparable consequence assessments using ensemble-averaged and probabilistic methodology for either dosage or toxic load based CA
 - However, Haber's law and toxic load model casualties could differ by a factor of two when full extent of the plume is considered
 - Dosage based hazardous plume have a longer downwind spatial extent than toxic load based hazardous plume
 - Slightly unstable atmospheric condition results in significant variations in CA depending on type of toxicity model used (e.g., dosage or toxic load)
 - For dosage based toxicity model
 - Depending on wind speed and size of the target area, *over-prediction* up to a factor of two is possible
 - Spatial distribution of casualties and hazard could be significantly different between two methods of doing CA
 - For toxic load model
 - Depending on wind speed and size of the target area, *under-prediction* up to 60-80% is possible
 - Toxic load model casualties could be a factor of 3 higher than casualties based on Haber's law

BACKUPS

IDA Toxic Load Based Consequence Assessment

Toxic Load based CA are non-trivial as the math is more difficult:

 $x(t) \to \overline{c(t,x)} \to \overline{TL(c(t,x))} \to Cas(\overline{TL(c(t,x))}) = \overline{Cas(TL(c(t,x)))}$

This step can be done when distribution of concentration fluctuations is assumed (e.g., SCIPUFF)

This step cannot be done with SCIPUFF without additional assumption of distribution of toxic load exposures

IDA HPAC Based Calculations of Toxic Load Exposure

Method 1 uses ensemble-averaged concentration c(x,t) alone

$$TL_{(\overline{c(\mathbf{x})})} = \sum_{k=1}^{K} \overline{c(\mathbf{x}, t_k)}^n \Delta t$$

Here $\overline{c(\mathbf{x},t_k)}$ denote ensemble-average concentration at time t_k

Method 2 uses both ensemble-averaged concentration and concentration variance to numerically calculate ensemble-averaged toxic load

 TU(c(x)) = 1 \$\sum_{TU}^{M} TU(c_{1}(x)) = 1 \$\sum_{TU}^{K} \sum_{C}^{n} (x, t_{1}) \$\lambda t = 1\$

$$\overline{TL}(c(\mathbf{x})) = \frac{1}{M} \sum_{m=1}^{M} TL(c_m(\mathbf{x})) = \frac{1}{M} \sum_{m=1}^{K} \sum_{k=1}^{K} c_m^n(\mathbf{x}, t_k) \Delta t =$$
$$= \sum_{k=1}^{K} \left(\frac{1}{M} \sum_{m=1}^{M} c_m^n(\mathbf{x}, t_k) \right) \Delta t = \sum_{k=1}^{K} \overline{c^n(\mathbf{x}, t_k)} \Delta t$$
$$\overline{c^n(\mathbf{x}, t_k)} = \int_0^\infty s^n p_{CN}(s) ds = \int_0^\infty s^n \frac{1}{\sigma_k(\mathbf{x})\sqrt{2\pi}} \exp\left(-\frac{(s - \mu_k(\mathbf{x}))^2}{2\sigma_k^2(\mathbf{x})}\right) ds$$

• Noting that function $f(r) = r^n$ is a convex function for n > 1, we arrive

$$\overline{c(\mathbf{x},t_k)}^n \leq \overline{c^n(\mathbf{x},t_k)}$$
 when $n > 1$

$$TL_{c}(\overline{c(\mathbf{x})}) \le \overline{TL(c(\mathbf{x}))}$$
 when $n > 1$

 μ_k and σ_k are obtained from $\overline{c(\mathbf{x},t_k)}$ and $\overline{c'^2(\mathbf{x},t_k)}$ by numerical inversion of a somewhat "complicated" equation

IDA Nori

Relationship Between Clip-Normal Distribution and Normal Distribution (as defined by HPAC)

Clip-Normal Distribution

$$p_{CN}(c) = \frac{1}{2} \left(1 - erf\left(\frac{\mu_G}{\sigma_G \sqrt{2}}\right) \right) \delta(c-0) + \frac{1}{\sigma_G \sqrt{2\pi}} \exp\left(-\frac{(c-\mu_G)^2}{2\sigma_G^2}\right), \quad c \ge 0$$

Mean and Sigma of Clip-Normal Distribution

$$\mu = \frac{\sigma_G}{\sqrt{2\pi}} \exp\left(-\frac{\mu_G^2}{2\sigma_G^2}\right) + \frac{\mu_G}{2} \left(1 + erf\left(\frac{\mu_G}{\sigma_G\sqrt{2}}\right)\right)$$
$$\sigma^2 = -\mu^2 + \frac{\sigma_G^2}{2} \left(1 + erf\left(\frac{\mu_G}{\sigma_G\sqrt{2}}\right)\right) + \mu_G\mu$$