

15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 6-9 May 2013, MADRID, SPAIN

Validation of a geostatistical interpolation model using measurement of particulate matter concentration

1 – Goal	2 – Methodology		
Aim : Validate a mathematical interpolation model (Kriging – geostatistic approach) using measurement.	A second network consisting of 6 additional measurement stations (•), using same instruments (GRIMM), was installed during 3 months to measure the concentrations of particulate matter (PM) in 6		
A telemetric network, consisting of fixed measurement stations (•) is used to control the quality of the air.	strategic locations. Validation steps:		
 → 23 fixed stations in Wallonia continuously measure the particles concentrations (PM10* and PM2.5*) in the air with a laser diffraction technology (GRIMM), and integrate every 30 minutes. Based on these fixed stations data, a geostatistic interpolation model is applied to evaluate the concentrations of pollutant in the whole of Wallonia. 	 Measurement of PM concentrations at fixed stations (■) Interpolation of these measures to estimate the concentration for the 6 strategic positions Measurement of PM concentrations on these positions by using additional stations (■) Comparison of the interpolated values to the ones given by the additional measurement stations 		
3 – Geostatistic method	4 – Application: pollution episodes		

In the geostatistic approach, what differs from a statistics approach is that the spatial auto-correlation between two neighbouring values is taken into account.

The measures are weighted according to the distance between to measurement stations using a variogram.

This variogram is computed from the covariance of stations locations.

Figure 1: Localisation of measurement stations

5 – Measurement locations

Fixed telemetric network (

The Charleroi area has interesting particular aspects for a measurement campaign and a model validation:

- 1 station located downtown
- 4 stations around this first one at a distance of 4km
- 3 stations forming a triangle around the town centre at a distance of 35km

Additional network (

The six additional stations are installed where the error of interpolation is **maximal (5** μg . m^{-3}), i.e. halfway to fixed stations

Concentration of PM10 in the air in $\mu g. m^{-3}$ on January 1st 2011 at 1AM

7 – Comparisons

Comparisons between interpolated and measured concentrations of PM10 and PM2.5 in the air in $\mu g. m^{-3}$ according to 3 criteria:

Orthogonal linear regression

Between sampler uncertainty $u_{bs} < 2.5 \ \mu g. m^{-3}$: criteria defined by Europe to compare and validate data supplied by two measurement instruments

z_{i,meas}: daily mean of measured concentrations for day i z_{i,int}: daily mean of interpolated concentrations for day i n: number of days

Difference of the mean of moving-average 24 hours

Figure 4: Half-hourly measurements

Figure 5: Daily means

Figure 6: evolution of the moving average twenty-four hours

Stations		S1	S2	S4	S5	S6
Number of days		71	70	78	78	59
Correlation coefficient	PM ₁₀	0.9773	0.9684	0.9745	0.9851	0.9573
	PM _{2.5}	0.9878	0.9862	0.9839	0.9920	0.9767
U _{bs} P	PM ₁₀	2.77	3.13	2.41	2.19	2.32
	PM _{2.5}	1.95	1.71	1.67	1.99	1.58

Table 3: Orthogonal linear regression and between sampler uncertainty

 \rightarrow 3 reasons to compare results on **daily averages**:

- Working with half-hourly measurement includes spots
- European regulations about air quality given for daily averages
- As the transport and diffusion phenomena have a certain duration, the longer the period of comparison, the better the correlation

Globally interpolation results **underestimated** the \rightarrow measurement

8 – Comments and conclusions

100

- Geostatistic model successfully \rightarrow validated according to 3 criteria
 - Orthogonal linear regression : correlation coefficient > 0.95
 - Between-sampler uncertainty < 2.0 μ g.m⁻³ for PM2.5 and < 3.20 μ g.m⁻³ for PM10
 - Difference of means of moving-average 24 hours < 1.9 µg.m⁻³

Stations location

- 5 stations in Charleroi centre giving almost the same measurements \rightarrow some of them could be moved to more strategic places
- Mobile stations show local phenomena which are not noticed with the fixed stations \rightarrow necessity to add fixed measurement stations

Discussions

• Concentrations in Charleroi centre lower than the ones measured by the mobile stations \rightarrow metrological issue

Definitions *PM2.5: also named "fine particles", diameter < 2.5µm *PM10: diameter < 10μm

Partners

AWAC : Walloon air and climate agency ISSeP : Scientific institute of public services

Contacts

Website http://airquality.issep.be lucie.bonvalet@umons.ac.be

Université de Mons

Lucie BONVALET, Andrée MARIJNS, Grégory COUSSEMENT and Charles PASSELECQ Fluids-Machines Department, Faculty of Engineering, rue du Joncquois 53, 7000 Mons, Belgium