

A Lagrangian stochastic model for estimating the high order statistics of a fluctuating plume in the neutral boundary layer

M. Marro, C. Nironi, P. Salizzoni, L. Soulhac

Laboratoire de Mécanique des Fluides et Acoustique, École Centrale Lyon

May 7, 2013

Marro, Nironi, Salizzoni, Soulhac

May 7, 2013 1 / 15

- 1 Introduction
- 2 Model equations
- 3 Numerical modelling
- 4 Numerical experiments
- 5 Conclusions

- Impact assessment of risks related to the dispersion of flammable gases and toxic substances.
- Simulation of the combined effects of the turbulent mixing and molecular diffusivity.
- Estimate of the concentration fluctuations and prediction of the higher statistics and the concentration PDFs.

- 1 Introduction
- 2 Model equations
- 3 Numerical modelling
- 4 Numerical experiments
- 5 Conclusions

- M. Cassiani, P. Franzese, U. Giostra, 2005a. A PDF micromixing model of dispersion for atmospheric flow. Part I: development of model, application to homogeneous turbulence and to a neutral boundary layer. Atmos. Environ. **39**, 1457-1469.
- J.V. Postma, J.D. Wilson, E. Yee, 2011a. Comparing two implementations of a micromixing model. Part I: wall shear-layer flow. Bound.-Layer Meteor. **140**, 207-224.
- J.E. Fackrell, A. Robins, 1982. Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary later. J. Fluid Mech. **117**, 1-26.
- B.L. Sawford, 2004. Micro-mixing modeling of scalar fluctuations for plumes in homogeneous turbulence. Flow Turbul. Combust. **72**, 133-160.

New experiment data set in wind tunnel:

- Measures of high order concentration statistics in a fluctuating plume in a neutral boundary layer.
- Poster session T8.

Numerical simulations:

- Comparison between experiments and computed solutions.
- Evaluation of the accuracy of the model.

1 Introduction

- 2 Model equations
- 3 Numerical modelling
- 4 Numerical experiments
- 5 Conclusions

Equations describing the evolution of the position X_i and velocity U_i of a set of independent fluid particles.

$$dX_{i} = (\langle u_{i} \rangle + U_{i}') dt$$

deterministic term stochastic diffusive term
$$dU_{i}' = \overbrace{a_{i}(\mathbf{X}, \mathbf{U}', t) dt}^{\text{deterministic term}} + \overbrace{b_{ij}(\mathbf{X}, \mathbf{U}', t) d\xi_{j}}^{\text{stochastic diffusive term}}$$

- U': Lagrangian velocity fluctuation related to the Eulerian mean velocity (ui).
- *a_i* is estimated according to the well-mixed conditions¹.
- *b_{ij}* is defined from the Kolmogorov's hypotheses of self-similarity and local isotropy in the inertial subrange².
- $d\xi_j$ incremental Wiener process with zero mean and variance dt.

²S.B. Pope, 1987. Phys. Fluids **30**, 2374-2379.

Marro, Nironi, Salizzoni, Soulhac

1 Introduction

2 Model equations

3 Numerical modelling

4 Numerical experiments

5 Conclusions

May 7, 2013 5 / 15

¹D.J. Thomson, 1987. J. Fluid Mech. **210**, 529-556.

Molecular diffusivity is simulated by an Interaction by Exchange with the Conditional Mean (IECM) model.

$$\frac{dC}{dt} = -\frac{C - \langle C | u_i \rangle}{\tau_m}$$

- C is the concentration associated to a fluid particle and $\langle C|u_i \rangle$ is the mean scalar concentration conditioned on the local position and velocity.
- The micromixing time τ_m represents the temporal scale of the molecular diffusion:
 - parametrization of τ_m follows the formulation of Cassiani et al. (2005a)³;
 - τ_m is assumed to be proportional to the time scale of the relative dispersion process, $\tau_m = \mu_t \tau_r$;
 - $\tau_m = f(\sigma_u, \varepsilon, \sigma_0, t)$

³M. Cassiani, P. Franzese, U. Giostra, 2005a. Atmos. Environ. **39**, 1457-1469.

2 Model equations

SLAM: computational algorithm

- 1. **Pre-processing** (X and U):
 - simulation of the trajectories of an ensemble of particles released at the source location;
 - estimate of the conditional mean concentration $\langle C|u_i\rangle$ and the micromixing time τ_m .
- 2. Simulation of the concentration fluctuations (X, U, C):
 - instantaneous release of a uniform particle distribution in the domain;
 - initialization of the particle properties (X, U, C);
 - main time loop:
 - loop on all the particles:
 - update particle velocity and position;
 - apply boundary conditions;
 - update particle concentration;
 - update cell-centred statistics;
 - update time-averaged statistics.

1 Introduction

2 Model equations

3 Numerical modelling

4 Numerical experiments

5 Conclusions

Experimental set-up

Velocity field \rightarrow Hot Wire Anemometry measures.

- Boundary layer depth $\delta = 0.8$ m.
- Friction velocity: $u^* = 0.185 \text{ m/s}$.
- Source height $\frac{h_s}{\delta} = 0.19$.
- Two source diameters: $\frac{\phi_1}{\delta} = 3.75$ e-3, $\frac{\phi_2}{\delta} = 7.5$ e-3.

Concentration field \rightarrow measures of ethane (passive scalar) concentration by means of Flame Ionization Detector.

Marro, Nironi, Salizzoni, Soulhac

4 Numerical

experiments

Numerical discretization parameters

Figure: M_2^* vs y/δ

• **a**: $\Delta t = 1e-3$, $\Delta x = 0.02$, $\Delta y = \Delta z = 5e-3$; • **b**: $\Delta t = 5e-4$, $\Delta x = 0.02$, $\Delta y = \Delta z = 5e-3$; • c: $\Delta t = 1e-3$, $\Delta x = 0.01$, $\Delta y = \Delta z = 3e-3$.

- 4 Numerical experiments

4 Numerical

experiments

C ₀	σ_{0}	Cr	$\mu_{\mathbf{t}}$	velocity classes
5.0	$\sqrt{2/3}d_s$	0.3	0.6	$3 \times 3 \times 3$

Table: Free parameter values adopted in the simulations

Non-dimensional concentration centred moments:

$$M_{i}^{*} = \left[\frac{1}{N_{c}}\sum_{p=1}^{N_{c}}(C_{p}-C_{c})^{i}\right]^{1/i}\frac{u_{\infty}\delta^{2}}{Q} \qquad i=1,2,3,4$$

- u_{∞} : the velocity at the boundary layer height;
- N_c: number of particles in a discrete volume;
- C_c: mean concentration in a discrete volume;
- C_p: concentration associated to a particle.

Results: M_i^* vs y/δ evaluated at the source height and $x/\delta = 0.625$

2 Model equations

- 3 Numerical modelling
- 4 Numerical experiments
- 5 Conclusions

Marro, Nironi, Salizzoni, Soulhac

LMFA

Harmo 15

May 7, 2013 11 / 15

Results: M_i^* vs y/δ evaluated at the source height and $x/\delta = 3.75$

1 Introduction

2 Model equations

3 Numerical modelling

4 Numerical experiments

5 Conclusions

Marro, Nironi, Salizzoni, Soulhac

LMFA

Harmo 15

May 7, 2013 12 / 15

Results: M_i^* vs y/δ evaluated at the source height and $x/\delta = 5.0$

2 Model

- 4 Numerical experiments
- 5 Conclusions

		-
$\nu_{rel} = \sqrt{ }$	$c \propto \Gamma(rrr) = 12$	
N N	$ \sim (M^*) = dv$	
N	$J = \infty \left[\left(\frac{1}{1} \right) 52 \right] = J$	

\mathbf{x}/δ	$D_{rel} M_3^*$	D _{rel} M ₄ *
3.75	0.17	0.36
5.0	0.12	0.29

Table: Relative difference of the third and fourth moments.

marro, minorit, banzzorit, boarrae	Marro,	Nironi,	Salizzoni,	Soulhac
------------------------------------	--------	---------	------------	---------

Conclusions

- The ability of the Lagrangian Stochastic Micromixing model SLAM to estimate concentration fluctuations was investigated.
- The dispersion of a fluctuating plume produced by a continuous release from a point source in a neutral boundary layer was simulated and a comparison with a new experimental data set was performed.
- Good agreement of the first four moments of the concentration close to the source.
- Good agreement of the mean concentration and variance in the far-field.
- Some discrepancies in the third and fourth moments of the concentration in the far-field.

Introduction

2 Model equations

3 Numerical modelling

4 Numerical experiments

5 Conclusions

LMFA

Harmo 15

1 Introduction

2 Model equations

3 Numerical modelling

4 Numerical experiments

5 Conclusions

Thank you for your attention! Any questions?

May 7, 2013 15 / 15