

UNCERTAINTY FACTORS IN MODELLING DISPERSION OF

SMOKE FROM WILD FIRES

IN A MEDITERRANEAN AREA

R. Cesari¹, C. Pizzigalli², F. Monti³, M D'Isidoro⁴, A. Maurizi³, M. Mircea⁴, F.Tampieri³

(1) ISAC-CNR Lecce, Str. Prov. Lecce-Monteroni km 1200, 73100 Lecce (Italy);
(2) Saipem S.P.A, 61032 Fano (PU) (Italy);
(3) ISAC-CNR Bologna, via Gobetti, 101, 40129 Bologna (Italy);
(4) ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy)

HARMO 15 Conference

summary

✓ motivation

✓ fire preprocessor description

✓ atmospheric dynamic and composition model

✓ case study

✓ discussion and conclusion

HARMO 15 Conference

motivation

- ✓ the Mediterranean Area is often affected by air pollution events;
- the Mediterranean Area is often affected by fires which burn thousand hectares of vegetation;
- ✓ gas and particulate emitted by forest fires can be transported over long distances, thus affecting both air quality and climate, from local to regional and global scales;

MODIS image, Algeria 29/08/07

>importance to include forest fire emissions in chemistry-transport model.

HARMO 15 Conference

wildfire emissions

$$E_i = A * B * CE * e_i$$

(Seiler and Crutzen, 1980)

 $E_i(kg)$ is the total emission of specie *i*

 $A(m^2)$ is the burnt area

B (kg m^{-2}) is the fuel load (biomass per surface unit)

CE (adimensional) is the combustion efficiency

 e_i is the emission factor of specie *i* (*g kg*⁻¹)

HARMO 15 Conference

wildfire emissions

✓ satellite data for spatial and temporal fires identification

✓ land cover classification map: B, e_i, CE depend on vegetation type (Whyedinmier et al. 2006)

T 7 ()• T	1	Evergreen Needleleaf Forest
Vegetation classes	2	Evergreen Broadleaf Forest
of UMD Global	3	Deciduous Needleleaf Forest
Land Cover	4	Deciduous Broadleaf Forest
Luna Cover	5	Mixed Forest
Classification map	6	Woodland
	7	Wooded Grassland
	8	Closed Shrubland
	9	Open Shrubland
	10	Grassland
	11	Cropland
	12	Bare Ground
	13	Urban and Built
	14	Water

wildfire emissions

✓ emitted species:

gas: CO₂, CO, NOx, NH₃, SO₂, NMHCs, CH₄ aerosol: PM₁₀, PM_{2.5}

emissions are supposed to not be constant during the day

	hour	% per hour hour		% per hour
	1	0.57	13	10
	2	0.57	14	13
	3	0.57	15	16
25	4	0.57	16	17
	5	0.57	17	12
27	6	0.57	18	7
	7	0.57	19	4
	8	0.57	20	0.57
	9	0.57	21	0.57
	10	2	22	0.57
	11	4	23	0.57
	12	7	24	0.57

Diurnal profile used to distribuite wildfire emissions. Source WRAP, 2005

HARMO 15 Conference

emissions height

It the injection height is related to the flaming intensity of the fire and it is estimated on the base of fire characteristics (such as the fire size and fuel loading);

✓ five plume classes are defined (WRAP, 2005);

the bottom (Pbotmax) and top (Ptopmax) altitudes of the fire plume are calculated as a function of plume class;

✓ a diurnal modulation, as function of the bouyant efficiency from the size class and the hourly bouyant efficiency, is then used.

Top and bottom emission height
as function of fire classes

Class	1	2	3	4	5
Ptop _{max} (m)	160	2400	6400	7200	8000
Ptop _{min} (m)	0	900	2200	3000	3000

HARMO 15 Conference

diurnal modulation WRAP2005 es.

• example of diurnal cycle of PM_{2.5} emission

• corresponding diurnal cycle of maximum (in green) and minimum (in black) emission height

HARMO 15 Conference

uncertainity factors

✓ fire spatial identification (burned area)

✓ fire temporal identification (time duration)

✓ fire evolution (temporal emission distribution)

✓ emission height

✓ vegetation database

The model: BOLCHEM

online coupled

Meteorological module: BOLAM

Photochemistry scheme: SAPRAC90 (lumped-molecular condensed mechanism)

Aerosol processes: AERO3 (modal approach three lognormal subdistributions) – secondary aerosols

Dry deposition

Wet deposition

BOLCHEM flow chart

HARMO 15 Conference

HARMO 15 Conference

case study: summer 2007 fires in Greece, Albania, Algeria

Active fires map 22 - 31 August 2007

HARMO 15 Conference

estimated emissions

prebolchem_fire based on MODIS "Burned Area Product"

FINNv1 (Fire INventory from NCAR version 1.0) based on "Fire Radiative Power operational MODIS product"

• daily emissions (KTons) of CO, NO2, PM2.5 and PM10 estimated by means of prebolchem-fire (blue) and FINNv1 model (red).

HARMO 15 Conference

estimated emissions

• total emissions (KTons) of CO, NO2, PM2.5 and PM10 estimated by means of prebolchem-fire (blue) and FINNv1 model (red) for the period 22-30 august 2007.

differences between the two emissions are mainly due to:

- ✓ different vegetation map,
- ✓ different feature of used MODIS product

BOLCHEM set up

- simulation period \rightarrow 22-31 August 2007
- **simulation domain** \rightarrow Europe and North Africa
- horizontal resolution $\rightarrow 0.25^{\circ} \ge 0.25^{\circ}$
- **vertical resolution** \rightarrow 40 vertical level in signa coordinates for meteorology, 20 for chemistry
- temporal step $\rightarrow 200$ s
- **initial and boundary METEOROLOGICAL condition** → meteorological fields from ECMWF (analysis) every 6 hours
- initial and boundary CHEMICAL condition → chemical fields from ECMWF (GEMS project) every 6 hours
- antropogenic emissions \rightarrow data set TNO (*TNO 2007*)
- **biogenic emissions** \rightarrow on line calculation (fluxes GEMS/NKUA (Symeonidis et al, 2007))
- **Fire emissions** → prebolchem_fire preprocessor
- $NOx = 95\% NO_2 + 5\% NO$
- $PM_{2.5} = 6\% BC + 84\% OC + 6\% S$
- SIMULATIONS: ant+bio / ant+bio+fire (different emission height set up)
 → fire (diff)

HARMO 15 Conference

C

Institute of Atmospheric Sciences and Climate (ISAC) - Italian National Research Council (CNR)

BOLCHEM simulations

concentration field of BC (μg/m³) for the 30th August 2007 17UTC:
(a) sim bio-ant-fire and (c) fire at ground; (b) sim bio-ant-fire and (d) fire at 850Hp

HARMO 15 Conference

BOLCHEM simulations

• simulated BC concentration (µg m⁻³) profile at Tito Scalo at 18 UTC (a), 19 UTC (b), 20 UTC (c) and 21UTC

HARMO 15 Conference

C

Institute of Atmospheric Sciences and Climate (ISAC) - Italian National Research Council (CNR)

BOLCHEM simulations

•Backscatter profiles in PEARL station for the 30 August 2007 at 18 hour *wrap2* setting, referring to wrap, increases the emission height for night time hours, and decreases both minimum and maximum emission height for early afternoon hours.

•Back trajectories heights (m) starting from Tito Scalo (30th August 2007 18UTC)

•BC concentration profile (µg m-3) from BOLCHEM at 21UTC at Tito Scalo (right).

HARMO 15 Conference

BOLCHEM simulation

active fires map 22 - 31 August 2007

HARMO 15 Conference

preliminary conclusion

✓ prebolchem_fire overestimates the wildfires emissions;

- the agreement is better when we consider the total quantity emitted during the whole case study period;
- ✓ differences between the two emissions are mainly due to different vegetation maps and due to different feature of used MODIS products.
- ✓ the model BOLCHEM captures the formation of aerosol layer, although difference in both vertical distribution and observation time are present;
- It they are probably due to the uncertainties related to the estimation of emission fluxes and the adopted daily modulation of fluxes and emission height;
- ✓ *wrap2* simulation reproduces BC vertical profile at lower heights.
- ➢ further work will be carried out to test wrap2, comparing the output model with different measurement stations data;

➢inclusion of a plume rise model in BOLCHEM