NEW LES CAPABILITY OF ADREA-HF

Mr. Nektarios Koutsourakis¹ Dr. Alexander Venetsanos² Prof. John G. Bartzis¹ Mr. Ilias Tolias²

¹ University of West Macedonia Greece
 ² NCSR "Demokritos" Greece

ADREA-HF CFD CODE Constantly developing

- Latest additions:
 - LES (Large Eddy Simulation)
 - Parallel solver
 - Arbitrary number of species
 - Combustion
 - GUI pre and post processor (called EDes)
- Advantages:
 - Robust, powerful and general
 - Specialization in environmental applications
 - "ADREA + dispersion": 29 hits in Scopus

ADREA-HF CFD CODE GUI environment for pre and post processing

ADREA-HF CFD CODE Post processing example with ADREA-HF GUI

LARGE EDDY SIMULATION Between DNS and RANS

- Navier-Stokes math. analysis: impossibly difficult
- DNS: Fully-resolved NS
 - Cost \propto Re^{2.75} (for wall-bounded flows \propto Re^{3.5})
- RANS: Time-averaged NS
 - Fast, widely tested, usually accurate "enough"
- LES: Spatially-filtered NS
 - Cost near wall: $\propto Re^{2.4}$! (at outer layer $\propto Re^{0.5}$)
 - Converges to DNS. As in DNS, LES needs:
 a) averaging b) demanding boundary conditions
 - Suggested were RANS fails: transient, separated flow

ENERGY CASCADE LES solves most of the turbulence

ENERGY CASCADE LES solves most of the turbulence

LES EQUATIONS AT ADREA-HF Compressible volume-filtered Navier-Stokes

Filtered equations:

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial (\bar{\rho} \tilde{u}_{i})}{\partial x_{i}} = 0 & \bar{p} = \bar{\rho} r \bar{T} \\ \frac{\partial (\bar{\rho} \tilde{u}_{i})}{\partial t} &+ \frac{\partial (\bar{\rho} \tilde{u}_{i} \tilde{u}_{j})}{\partial x_{j}} = - \frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial (\tilde{\tau}_{ij}^{l} + \tau_{ij}^{R})}{\partial x_{j}} & \tilde{\tau}_{ij}^{l} + \frac{2}{3} \mu \frac{\partial \tilde{u}_{k}}{\partial x_{k}} \delta_{ij} = 2 \mu \tilde{S}_{ij} \\ \tau_{ij}^{R} &= - \bar{\rho} u_{i} u_{j} + \bar{\rho} \tilde{u}_{i} \tilde{u}_{j} & \tilde{S}_{ij} = \frac{1}{2} \left(\frac{\partial \tilde{u}_{i}}{\partial x_{j}} + \frac{\partial \tilde{u}_{j}}{\partial x_{i}} \right) \end{split}$$

Smagorinsky model of the residual stress tensor

$$\tau_{ij}^{R} + \frac{1}{3}\tau_{kk}\delta_{ij} = 2\mu_{t}\tilde{S}_{ij}; \ \mu_{t} = \overline{\rho}(C_{s}\Delta)^{2}\sqrt{2\tilde{S}_{ij}\tilde{S}_{ij}} \qquad \Delta = V^{1/3} \quad \text{Cs=0.1}$$

LES AT ADREA-HF Numerics

- ADREA/SIMPLER algorithm
- Central differences convection scheme
- Solver: Parallel BiCGstab with parallel Schwarz preconditioner. Speedup with 2 CPUs up to 1.7
- For more:
 - Venetsanos, A. G., E. Papanikolaou and J. G. Bartzis, 2010: The ADREA-HF CFD code for consequence assessment of hydrogen applications. <u>Int. J. Hydrogen Energy</u>, 35, 3908.

Boundary and initial conditions

- Initial conditions should also create turbulence
 - "Vortex generator" may be needed
 - Simpler solution: big over-imposed disturbance
- Boundary conditions should also retain turbulence
 - Difficult to do explicitly
 - Simpler solution: cyclic BC
- Near wall:
 - Well-resolved LES requires z⁺=1
 - "Wall-function"-type solutions for coarser grids

TEST CASES SETUP a) Channel flow

- 1D fully-developed channel flow: the classic LES test
 - DNS of Moser et al, 1999 *Re* = 8000
 - 90000 cells
 - Cyclic BC
 - *z*⁺ = 1
 - $CFL_{max} < 0.3$
 - $-C_{\rm s} = 0.065$
 - Mass flow correction to control Re
 - Time 50s = 160 passes Averaging from 20s

TEST CASES SETUP b) Street canyon

- 2D street canyon: the most basic urban case
 - Water channel of Li et al, 2009 Re = 12000
 - 300000 cells
 - Cyclic BC: sequence of identical canyons
 - *z*+ = 1
 - Time 1000s = 250H/U Averaging from 400s

FULLY DEVELOPED CHANNEL FLOW Pressure isosurfaces and velocity vectors

FULLY DEVELOPED CHANNEL FLOW Comparison with DNS and other LES

STREET CANYON Canyon 1: Building width=2H. Real time movie

STREET CANYON Canyon 2: Building =1H. Comparison with exp.

STREET CANYON Canyon 2: Building =1H. Comparison with exp.

Harmo 13 – LES of ADREA-HF

DISCUSSION LES of ADREA-HF is competitive

- ADREA performs well against exps and other LESs
- <u>Channel</u>: C_s correction needed near wall
- General tendency of Reynolds stresses predicted
- <u>Canyon</u>: Performance very close to fine-grid LES
- Profiles similar shape to experimental ones
- Experiment stronger vortex with more turbulence:
 - In experiment vortex generators were used
 - In experiment 3D effects were present
- RANS (not shown) was also good in these tests

CONCLUSIONS LES is not for everyday use

- <u>ADREA-HF</u> has now tested <u>LES</u>
- LES is not RANS++
- LES orders of magnitude more expensive than RANS
- Near wall treatment a key point for real-world cases
- What now:
 - Refine ADREA LES
 - Add and test more LES options

THE END ... is also a beginning

For any suggestions:

nk@ipta.demokritos.gr