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INTRODUCTION 
Modern approaches to validation of dispersion models upon experimental data are usually based 
on calculation of different indicators of performance of the models (see for example Ohlesen, 
1997). The aforementioned indicators can be considered as certain metrics invented for 
evaluating the measure of closeness of model predictions and measurements. The procedure of 
validation starts with generation of the model set of data called "predictions", which mimics a 
set of data of measurements called "measurements".  Then one can use any kind of the 
concurrent analysis to evaluate the measure of closeness of these two sets or, in other words, to 
estimate the performance of the model in question.  
 
The indicators of performance/closeness most often used in validation of dispersion models are 
defined by the following expression:  
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Here FBM is the fractional bias of means values, MFB is the mean value of fractional biases, 
FAa characterizes an agreement within a factor of "a", NMSE is the normalized mean square 
error, Corr is the coefficient of linear correlation, brackets indicate the procedure of averaging, 
Prob means the probability of the event indicated in parentheses, M and P are measured and 
predicted concentrations, respectively.   
 
When validating the dispersion model and estimating the indicators (1) – (7), one is interested in 
comparison their values with reference ones corresponding to a "good model". The following 
values of these indicators are expected in the case, when the data sets P and M are identical:  
FBM = MFB = NMSE = 0; Corr = 1; FAa = 1 (for a > 1). Such a case, however, is completely 
fictitious, and it is hard to expect that these values are applicable in any realistic situation. The 
goal of this paper is to present a more reliable set of reference values of these indicators and to 
analyze their efficiency. It will be done in connection with a problem of validation of a 
dispersion model, which formally predicts "actual" (corresponding to given meteorological 
conditions) centerline concentrations from a point source. Corresponding methods have been 
discussed in numerous publications including Irwin (1999), Irwin and Rosu (1998) and others. 
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"PERFECT MODELS" AND A METHODOLOGY OF THEIR VALIDATION 
 
A dispersion model is represented by the following expression:  
 
c f x ti j k= ( , , ) ,ω  (6) 
               
where c means concentration of the pollutant ("tracer"), xi are coordinates of the receptor point 
relative to the source, ωj are governing meteorological parameters, and tk are governing 
"technical" parameters of the source (like the emission rate, volume rate, stack height and 
diameter, effluent temperature and so on). In Eq. (6), f means a general functional dependence 
and could be a differential equation or even a physical instrument installed in the wind tunnel. 
For the sake of simplicity, however, it is assumed further on that f is an analytical expression. In 
fact Eq. (6) is usually constructed as a combination of several sub-models (e.g. transport and 
dispersion, plume rise and so on); all these models are assumed here to be deterministic.  
 
In the process of validation, concentrations predicted with Eq. (6) should be compared with 
those measured in experiments. When validating this model, a whole interval of variations of the 
governing parameter ωj, for example, should be divided (stratified) into a set of sub-intervals or 
gradations ∆nωj (a notation ∆nj is also used in this paper). The width of these subintervals should 
satisfy to the following conditions:  
 
| | ,α j nj∆ <<1  (7) 
 
where αj = ∂(ln f)/∂ωj. Correspondingly, the sample of the measured concentrations is stratified 
into a set of sub-samples corresponding to given subintervals of governing parameters and given 
distances from the source to the receptor points. Each combination of sub-intervals ∆nj and 
distance from the source defines a certain "regime" (using terminology suggested by J. Irwin).  It 
is assumed in this paper that the volume of each of sub-samples is large enough to make possible 
reliable statistical estimates.  
 
Statistical properties of concentrations in the plume at given meteorological conditions were 
theoretically studied by Gifford (1959). He indicated, in particular, that centerline concentration 
is a stochastic variable. Using certain physical assumptions for short-term concentrations, valid 
mainly on average, Gifford derived an analytical expression for the probability density of 
centerline concentrations. Empirical PDFs of the centerline concentrations were studied by Irwin 
and Lee (1997). Processing the Kincaid data set (see Ohlesen, 1997), Genikhovich and Filatova 
(2001) found that, having stratified the sample of measure concentration accordingly to the 
distances from the source and meteorological conditions and having removed several outliers 
corresponding the lowest measured values, one can approximate PDFs of the centerline 
concentrations with the log-normal distribution which corresponds to the following probability 
density:  
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where ln (m ) is the mean value (mathematical expectation) of logarithms of concentrations (in 
other words, m is the geometric mean of concentrations), and s is the standard deviation of these 
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logarithms of concentrations ("logarithmic standard deviation"). Such an approximation will be 
used in this paper too, but the results obtained can be easily reformulated for other PDFs.  
  
Let us call the model "perfect", if, for each of sub-intervals of governing parameters, it generates 
a value of concentration, which is exactly equal to a certain statistical characteristics of the PDF 
of concentrations corresponding to these sub-intervals. It is assumed also in addition that perfect 
models "perfectly account" for the influence of governing technical parameters, which will be 
further omitted from Eq. (6).  
 
This paper will be focused only on the cases when these statistical characteristics are either 
mean values of concentration in gradations or certain percentiles of their PDF. Using Eq. (8) one 
can easily derive the following expressions for these characteristics:  
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where <c> is the mean value of concentrations, σc

2 is their standard deviation, cp is the p-th 
fractile of the PDF, Z1-2p is a solution of the equation erf(Z1-2p) = 1-2p, and erf is the error 
function.  
 
Mathematical expectations (mean values) of the indicators of performance introduced by Eq. (1) 
– (3) can be directly calculated using Eq. (8). In particular,  
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Assuming that the model predicts constantly the same value of concentration for the whole 
gradation, one can easily obtain that Corr = 0. In this case, substituting (8) into Eq. (4), one can 
obtain the following expression for NMSE:  
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It should be noted, however, that in many validation exercises model predictions, M, are 
calculated with the use of the actual meteorological data accompanying the measured 
concentrations, P. It is obvious that indicators (1) – (3) should not be sensitive to this variation 
of the validation procedure as soon as conditions (7) are satisfied. It is not correct, however, 
when speaking about other indicators of performance. Corresponding effects on NMSE and Corr 
will be discussed further.  
 
PERFORMANCE OF PERFECT MODELS 
Accordingly to the aforementioned definition, if the model given by Eq. (6) is perfect, its 
prediction, P, is described either by Eq. (9) or by Eq. (11). Substituting these expressions into 
(12) – (15) one can evaluate the indicators of performance as functions of the only parameter "s" 
which characterize the variability of the measured centerline concentrations. Corresponding 
results are presented in Fig. 1 – 4. The curves on these figures correspond to the values of input 
parameters listed in Table 1. The integral in the right-hand side of Eq. (13) was calculated 
numerically.  
 
Table 1. Input parameters used in computations 
Curve No Modeled characteristics  p Z2p-1 

0 Mean value  - - 
1 P - fractile 0.50 0 
2 P - fractile 0.75 0.4769 
3 P - fractile 0.90 0.9062 
4 P - fractile 0.95 1.1631 
5 P - fractile 0.98 1.6450 
6 P - fractile 0.99 1.8214 
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Figure 1. FBM as a function of s (see notations in Table 1) 

 
When analyzing the results presented in Figure 1, it is obvious that FBM is equal to zero 
independently on s, if P is defined from Eq. (9). More informative is the fact that p = 0.75 gives 
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very small FBM values too and that FBM is "reasonably small", in a sense, when P matches 
fractiles corresponding to 0.5 ≤ p ≤ 0.9.It is seen from Figure 2, however, that MBF, is equal to 
zero independently on s, if P matches the 50th percentile of the PDF of concentrations (in other 
words, if P is a geometric mean value of concentrations). The values of FBN seem to be 
acceptable, if P matches the same interval of fractiles or the mean value of concentrations.  
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Figure 2. MFB as a function of s (see notations in Table 1) 
 
The values of FAa calculated with a = 2 are presented in Figue 3. One can see here that P 
corresponding to the arithmetic mean value and to fractiles from p = 0.50 to 0.75 are again 
characterized with close values of this indicator. However, the model performs better, especially 
for large s, if P matches the geometric mean concentrations. As for NMSE presented on Figure 
4, it demonstrates a non-monotonic behavior: errors corresponding to p = 0.75 are the smallest 
ones, if the values of s are small; if, however, s > 0.65, the NMSE indicator gives better model 
performance with P matching the 90th percentile.  
 
DISCUSSION  
If model predictions are calculated with the use of the actual meteorological data accompanying 
the measured concentrations, indicators NMSE and Corr should be determined differently. It is 
obvious that <(M-P)2> could be presented in the following form:  
 
< − >= − + + < >−< >( ) ( ) ,M P Corr M PM M P P

2 2 2 22σ σ σ σ (16) 
 
where σM and σP are standard deviations of measured and predicted concentrations. As it is seen 
from Eq. (16), NMSE could be expressed in the general case via Corr and other first and second 
moments of measured and predicted concentrations. They could be evaluated using the Taylor 
expansion of Eq. (6):  
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where the point ω0
j is located inside ∆nj and c0 = f(xi, ω0

j). It should be noted here that c0 is a 
non-stochastic value. After averaging, Eq. (17) yields and expression for the mean value of the 
calculated concentration, <c> = <P>. It follows from this expression, in particular, that c0 = <c>, 
if  
 
ω ωj j

0 =< >.  (18)
 
This condition is assumed to be satisfied in the following considerations.  
 
Using Eq. (17) and (18) one can derive the following formulas:  
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where σj is the standard deviation of the meteorological parameter ωj, Rjk is the coefficient of 
linear correlations between ωj and ωk (certainly Rii = 1), and ρj is the coefficient of linear 
correlations between ωj and measured concentrations. After substituting Eq. (19) and (20) into 
(16), one can see that NMSE and Corr reflect properties of the atmosphere rather than those of 
the model. It could be demonstrated on the standard Gaussian model. When the stability 
category is given, concentrations here depend only on one governing parameter that is the wind 
speed, U. It follows from (19) and (20) here that Corr = ±ρUC where ρUC is the coefficient of 
correlation between measured concentrations and wind speeds.  
 
The results presented on Figures 1 to 4 can be used in practical applications, if the value of s is 
found. It could be determined, for example, either by fitting the empirical PDF with the 
lognormal distribution or by calculating the second central moment of logarithms of measured 
concentrations. If the coefficient of variation of concentrations (the ratio of the standard 
deviation to the mean value), V, is known, one can find s using the relationship V2 = exp(s2) –1. 
Genikhovich and Filatova (2001) found that Kincaid data correspond to s varying in the range 
from 0.6 to 1.2. The procedure of filtration of PDF suggested by these authors could reduce s as 
much as in 20%. If such a procedure is not applied, however, the values of indicators of 
performance corresponding to s = 1 could be roughly considered as reference values when 
validating dispersion models.  
 
It should be noted that Eq. (12) – (15) correspond to mathematical expectations of the indicators 
considered. In fact, however, they are estimated from samples of limited volume, and, as a 
result, one could expect a certain statistical scatter of these estimates around corresponding 
mathematical expectations. This scatter could be characterized by dispersions of indicators (1) – 
(4), which, in turn, can be easily estimated as second central moments using the same probability 
density (8). Finally, it should be pointed out that the aforementioned indicators are not self-
consistent because their optimal values correspond to tuning the model to different statistical 
characteristics of the measured data set. 
 
CONCLUSION 
The aforementioned results indicate that, due to the inherent high variability of data of 
measurements, the indicators of performance of dispersion models predicting "actual" (i.e. 
individual) values of concentrations cannot be better than their reference To put it bluntly, they 
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indicate that individual values of axial concentrations, due to their turbulent nature, can be 
estimated only with a rather large error even if the deterministic model in use is perfect. This 
error is of order of 100% for the data sets used in the evaluation practice. If the errors in the 
input data are taken into account, the resulting errors in concentrations could be even large. 
Thus, the data sets appear to be very noisy when compared with model predictions.  
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Figure 3.  FA2 as a function of s (see notations in Table 1) 
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Figure 4. NMSE as a function of s (see notations in Table 1) 
 
In such a situation only those functional dependencies included in Eq. (6) could be validated 
which result in significant variations of concentrations. This statement can be reversed in the 
following way: the values of concentrations normalized with corresponding emission rates, 
which are included in the data set used in validation purposes, should vary significantly (roughly 
speaking, the whole spectrum of regimes should cover several orders of magnitude of 
concentrations). When validating the probability distribution functions, the level of the noise in 
the measurements could be reduced, if the volume of the sample "corresponding to the evaluated 
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percentile" is big enough. It is not the case, however, for high percentiles, which obviously 
correspond to rare events. Here, one can find beneficial to work with dispersion models 
predicting directly upper percentiles. This type of models was discussed in this paper too, but it 
is obvious that they are "skewed" in the average sense and should be characterized using 
different indicators of performance. Additional discussion of this problem can be found, for 
example, in Genikhovich, Schiermeier (1995).  
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