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INTRODUCTION 
The validation and reliability of atmospheric dispersion models are important concerns for both 
model users and developers. Numerous field experiments have been conducted to address these 
issues of model reliability, with the results of the field experiments often being used to evaluate 
differences between the performance of different models (e.g. Hanna et al., 2001; Hill et al., 
2001). However, atmospheric dispersion models have a number of sources of uncertainty. These 
include the errors in model formulations and model physics that will vary between models, 
though errors in model inputs and those due to the inherent uncertainties that are caused by 
stochastic atmospheric process are also considered to be important (Fox, 1984; Venkatram, 
1988).  
 
This paper develops a probabilistic modelling framework to estimate the errors in both model 
input data and those caused by the stochastic nature of atmospheric turbulence. This 
probabilistic methodology was then used to provide input data sets for a simple Gaussian plume 
atmospheric dispersion model. Meteorological measurements were used to assign distributions 
to key input parameters. Finally, the probabilistic distributions output by the model were 
compared with field measurement data from BNFL Sellafield (85Kr air concentrations and 41Ar 
gamma doses) to investigate the underlying causes of model uncertainty found in previous 
validation studies conducted by Hill et al. (2001) and Lowles et al. (2001). 
 
ATMOSPHERIC DISPERSION MODELLING 
The R91 Gaussian plume atmospheric dispersion model (Clarke, 1979) was used in this study. 
This model uses the Pasquill-Gifford stability classification scheme to subdivide atmospheric 
stabilities into seven types ranging from A (highly unstable) to G (highly stable). The model 
does not account for variations in plume spread with height in the atmosphere, though the 
relationship between plume advection speed and height was approximated through the use of a 
simple power law relationship. 
 
The R91 model was selected based on its simplicity and speed, enabling the model to be run 
with more that 2,500 Monte Carlo sampled input parameter sets per hour of meteorological data. 
Also, field validation experiments have shown that the performance of the R91 model is similar 
to that of the more complex UKADMS model when both models are run using effective stack 
heights determined from wind tunnel studies. Further details of the modelling methods used and 
the results of the intercomparisons between R91 and UK-ADMS can be found in Hill et al. 
(2001) and Lowles et al. (2001). 
 
DEVELOPMENT OF A MONTE CARLO MODEL 
Monte Carlo techniques have been extensively used to evaluate the uncertainty in atmospheric 
dispersion models. However, it is important to recognise that the methods are limited by the 
realism and generality of the input distributions that are used. The Monte Carlo model that was 
developed in this study had to utilise uncertainty distributions for the input data required by the 
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R91 dispersion model. These fall into three generic groups: (i) receptor data; (ii) source data and 
(iii) meteorological data.  
 
The development of a Monte Carlo model was straightforward for groups (i) and (ii) as the 
model input data could be directly assigned probability distributions that were independent of 
the other sources of uncertainty in the model. The uncertainties in the bearing and distance to the 
receptor location were both estimated to be normally distributed with a standard deviation of 5o 

and 5% of the best estimate value respectively for distances less than 1.5 km. The source 
emission data uncertainties, were included as normal distributions with standard deviations of 
+/- 5 % of the emission rate for all sources. This approximation was based on calibration data 
supplied by the Sellafield site. The uncertainties in the effective stack heights were determined 
directly from the original wind tunnel studies and were included in the model as uniform 
distributions ranging from 58-80m and 75-95m for the two stacks that discharge 85Kr and from 
15-40m for each of the reactor stacks that discharge 41Ar. 
 
A meteorological module was developed to account for the correlated uncertainties in hourly 
meteorological input data (group iii), as shown in Figure 1. As the underlying cause of the 
correlations between meteorological uncertainties was the intensity of atmospheric turbulence 
(which is itself related to the wind speed) a feedback loop was included enabling the uncertainty 
distributions of the wind speed, wind direction and standard deviation of the wind direction 
(termed sigma-theta) to vary with wind speed.  
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Figure 1: Detailed structure of the meteorological module of the Monte Carlo model. Boxes with 
a dashed outline indicate uncertainty distributions (e) from which model input data (solid line) 
were determined. The shaded boxes are calculation modules and were not directly input to the 
R91 model. 
 
A further consideration when developing the meteorological module was the calculation of the 
uncertainty in the stability class. This could not simply be assigned a distribution and 
consequently was calculated from the relationship between Monin-Obukhov length and stability 
class derived by Golder (1972). This was achieved by including the surface heat flux (and its 
uncertainty distribution) as an input to the Monte Carlo model. An iterative technique was used 
to determine friction velocities and Monin-Obukhov lengths from wind speed and heat flux data. 
Uncertainties in wind speeds, wind directions and sigma-theta values were estimated by 
analysing paired wind speed and wind direction readings collected from opposite sides of the 
BNFL Sellafield site. The use of this experimental dataset allowed the uncertainty model to 
capture both the instrument error and the stochastic uncertainty in meteorological measurements. 
For wind speed and sigma-theta data the hourly co-efficient of variation (CV) corresponding to 
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each time period that measurements were recorded was calculated from the paired measurements 
(termed d1 and d2) using equation 1, where σ is the standard deviation. For wind direction data 
the difference in angle between the paired measurements was calculated.  
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Data were subdivided into nine wind speed ranges with the limits to these ranges calculated by 
ensuring that each range contained approximately the same number of data points 
(approximately 350 hours). A median value of either CV or wind direction difference was 
evaluated as the "best estimate" of the uncertainty within each of the ranges. The results of this 
analysis are shown in Table 1. All the distributions were parameterised in the model using 
normal distributions with the mean being given by each hours deterministic measurement from 
the Sellafield meteorological station. The standard deviations of the distributions for wind speed 
and sigma-theta were calculated from the median CV values, whilst the standard deviation for 
the wind direction was taken directly from the median wind angle difference. 

Table 1. Analysis of the uncertainty in meteorological data determined from paired 
meteorological measurements. 
Wind Speed bin  
(m s-1) 

Median CV  
Wind Speed 
(non dimensional) 

Median CV  
Sigma-theta 
(non dimensional) 

Median  
Wind Angle Difference 
(degrees) 

<1.9 0.19 0.55 31.75 
>1.9 <2.5 0.17 0.57 22.15 
>2.5 < 3.2 0.13 0.49 14.62 
>3.2 <4.1 0.12 0.40 10.04 
>4.1 <5.0 0.13 0.36 5.93 
>5.0 <6.0 0.14 0.31 5.32 
>6.0 <6.9 0.15 0.35 5.35 
>6.9 <8.1 0.16 0.36 5.52 
>8.1 0.15 0.32 5.27 
 
The uncertainty in the heat flux was determined from paired eddy correlation and flux profile 
measurements collected at the meteorological site. The standard deviation of the heat flux was 
estimated to be +/- 40% of the mean value and a normal distribution was used to include this 
error term in the Monte Carlo model. 
 
COMPARISON BETWEEN FIELD MEASUREMENTS AND PROBABILISTIC 
MODELLING  
Data within the 85Kr and 41Ar field measurement databases were compared with the predictions 
of the R91 model run using probabilistic input data. Data were selected from the 41Ar monitoring 
database for periods of 1 hour and 24 hours when the gamma doses were above the limit of 
detection of 1 nSv hr-1. These data relate to dispersion from the Calder reactors to the critical 
group. Data were selected from the 85Kr database for monitoring periods when receptor locations 
were within 1.5 km of the site, averaging times were between 2-48 hours and air concentrations 
were above 5 Bq m-3. 
 
The field measurements were compared with these distributions to assess the probability that the 
model would predict the value measured in the field. Due to the bias (an overprediction by the 
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model) identified between the 85Kr measurements and the model predictions in Hill et al. (2001) 
a simple correction factor (a factor of 2.0) was applied to account for what appears to be an error 
in the model formulation or physics. Corrected and uncorrected data were both included in the 
subsequent analysis. A summary of these input data and the percentage of the measurements that 
were within the range of the probabilistic model are shown in table 2. 

Table 2: Comparison of selected data from the 85Kr and 41Ar databases with the range of 
predictions from the probabilistic Monte Carlo model.  

85Kr Air Concentrations 41Ar Gamma Doses  
Uncorrected Bias corrected Hourly Daily 

Number of measurements 88 88 938 47 
Measurements ranking within  
the 0-100 percentiles of the 
model range 

90% 92% 96% 92% 

 
The data shown in Table 2 illustrate that the probabilistic model had performed well and 
accounted for the differences between the model predictions and the field measurements for 
more than 90% of the data that were evaluated. It was particularly encouraging that the model 
described the variation in the 41Ar measurements collected over both 1 and 24 hour averaging 
periods as this illustrates the generality of the uncertainty model. 
 
It was also important to establish how well the uncertainty model described the range of 
variability that was found between model predictions and the field measurements. This was in 
order to establish that the uncertainty model had not grossly overestimated the range that 
concentrations or doses could take. If the probabilistic model had accounted for all sources of 
model uncertainty then the field measurements would sit at random positions across the entire 
probabilistic range. 
 
The above test was applied to the Monte Carlo model by evaluating the percentile that each of 
the field measurements was located on the corresponding modelled probabilistic range. This 
process was repeated for all the data selected from the 85Kr and 41Ar databases. In order to 
convert from continuous probabilities to discreet probabilities the percentiles were binned into 
10 categories. A graph of these distributions is shown in Figure 2. 
 
The data shown in Figure 2 demonstrate that the combined Monte Carlo/atmospheric dispersion 
model did not sample uniformly across all percentile bins, with chi-squared tests confirming that 
there were significant differences between the model predictions and homogeneity. In general 
though, the model was found to realistically represent the range of values from the field datasets, 
indicating that much of the variability found in the previous validation studies was due to input 
data errors and stochastic variations in meteorological data. The differences shown in figure 2 
could be reduced by using a more sophisticated dispersion model (particularly the over 
predictions of low percentile ranges for the 85Kr measurements), by refinement of the parameters 
used in the Monte Carlo model or by evaluating a larger set of measurements.  
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Figure 2: Probability distribution showing the frequency that each of 10 percentile ranges of the 
Monte Carlo uncertainty model were represented by field measurements from the 85Kr and 41Ar 
databases. The horizontal line shows the results that would be expected from a perfect  model. 
 
CONCLUSIONS 
A probabilistic Monte Carlo modelling methodology, accounting for uncertainties in receptor 
data, source data and meteorological data, was developed and applied as a pre-processor to the 
simple R91 atmospheric dispersion model. The probabilistic predictions of the R91 model were 
compared with extensive field datasets of 85Kr air concentrations and 41Ar gamma doses. The 
results of this comparison showed that the probabilistic model accounted for a high proportion of 
the uncertainty found in the field measurements, indicating that uncertainties in model inputs 
and due to the stochastic nature of turbulence predominate. Further model intercomparison 
studies could use similar techniques to assess the uncertainties that result from differences in 
model formulations. 
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