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Abstract: Currently, atmospheric dispersion 3-D modelling has reached a maturity stage. Some Computational 

Fluid Dynamics (CFD) approaches have a high level of spatial and temporal accuracy for complex environments 
where site effects due to topography and/or buildings are significant, such as in urban areas. Various models require 
however heavy computational resources and prolonged runtimes ranging to several hours. This time requirement can 
be restrictive in crisis situations. One relevant scenario is the prediction with high urgency of the dispersion from a 

source in case of an accidental or a malicious release. In this paper, we propose to use synthetic data generated by 
highly accurate but time-consuming CFD models to train offline a Deep Neural Network (DNN). Specifically, we use 
Parallel Micro-SWIFT-SPRAY (PMSS), a multi-scale 3-D dispersion simulator parallelized over high performance 
computing resources, to generate two sets of pollutant concentration maps in two French cities: Grenoble and Paris. 
The DNN is trained on the Grenoble dataset to capture the underlying physics of transport and dispersion. The results 
show that the learned model generalizes successfully, as it is able to estimate accurately the pollution map in Paris 
unseen conditions.   
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INTRODUCTION 

 
Toxic air pollutants are substances of different natures that raise many issues for the population. Being 

exposed to such pollutants can provoke several effects from minor discomforts (e.g. bad odor) to serious 

health problems (cancer, lung infection, birth defects...). Particularly, unexpected emissions of 

contaminants in urban areas, be it accidental or hostile, is a high priority concern. Such incidents require 

an urgent crisis intervention strategy from the authorities to protect the population and limit the material 

and environmental casualties. Dispersion modeling serves to estimate the concentration of a pollutant at 

different distances and directions from the sources. The models can compare exposures to some selected 

benchmark, such as a state pollution standard or a level with a known health effect, providing 

recommendations to decision makers (Sorensen, 2004).  

 

Nowadays, Computational Fluid Dynamics (CFD) can model 3-D atmospheric dispersion with highly 

realistic accuracy for the most complex environments such as urban areas. However, such models require 
heavy computational resources and prolonged simulation time ranging to several hours (Zannetti, 2013). 

Alternatively, many researchers have explored the idea of introducing learning models into atmospheric 

dispersion prediction (Cabaneros, Calautit, & Hughes, 2019). In fact, such models have proven their 

ability to approximate extremely complex systems from observational data with highly nonlinear 

transformations. Compared to CFD, a trained neural network is generally time-efficient and low-

demanding in terms of computational resources. These properties make it a suitable solution for 

predicting the impact of a hazardous release, where time for assessment is a serious restriction. However, 

the main drawback in machine learning is low quality and/or quantity of data. This is a crucial issue as 

learning models find recurring patterns on the training data to infer governing relationship between the 

input and output variables. The more situations are covered, the more powerful the inference capability 

the model will have. In case of dispersion modeling, data are usually collected from real size experiments 
or small-scale experiments in wind tunnels, which are both expensive (sensors, release systems, gases to 



be released, etc.), slow (long acquisition campaigns), with predefined weather conditions (Blocken, 

Stathopoulos, Saathoff, & Wang, 2008).  

 

In this paper, we propose to exploit a highly realistic CFD simulator to generate datasets that will serve to 

train and validate a deep learning model. In the simulation environment, the weather characteristics, the 

properties of the chemical release and the geometry of the terrain can be configured with no constraints. 

The learning models are trained on such synthetic data with the intention to use them in real crisis 

situations.  

 

SYNTHETIC DATA GENERATION 

 
We use Parallel Micro-SWIFT-SPRAY (PMSS) (Tinarelli, et al., 2013) (Oldrini, et al., 2017) as 

numerical modeling system of atmospheric transport and dispersion. It is the parallel version of Micro-

SWIFT-SPRAY composed of 1) Micro-SWIFT: an analytically modified mass consistent interpolator 

over complex terrain. Given topography, meteorological data and buildings, a mass consistent 3-D wind 

field is generated. It is also able to derive diagnostic turbulence parameters to be used by Micro-SPRAY 

inside the flow zones modified by obstacles and 2) Micro-SPRAY: a Lagrangian particle dispersion 

model able to take into account the presence of obstacles. The dispersion of a pollutant is simulated 

following the trajectories of a large number of fictitious particles. The trajectories are obtained by 

integrating in time the particle velocity, which is the sum of a transport component defined by the local 

averaged wind provided generally by Micro-SWIFT, and a stochastic component, standing for the 

dispersion due to the atmospheric turbulence. 

 

 
Figure 1. Left: street map of a part of the French city Grenoble and the considered bounding box for the simulation 

domain; Right: raster representation. The different hypothetical source locations are pinpointed with red dots. 

 
The dataset to be used in the learning process is composed of 14,796 instances of integrated concentration 

over 2 hours, generated by PMSS for the following configuration. As shown in Figure 1, the urban area 

that constitutes the computation domain in PMSS is a neighborhood of the French city Grenoble located 

in the bounding box 𝑥, 𝑦 ∈ [913301, 914301] × [6457391, 6458391], expressed in Lambert 93 

coordinate reference system. It is a 500 × 500 grid with a space resolution of 2 m. The emission source is 

considered in 274 different hypothetical locations given 54 stationary weather conditions, built from a 

combination of 18 values of wind direction 𝜃 [∘] ∈ {0, 20,40, … ,340} and 3 values of wind 

speed 𝑣 [𝑚. 𝑠−1] ∈ {1.5, 3, 6}.  

 

A point source produces an instantaneous fictitious emission of a unit mass of the pollutant (gas or 

particle matter). For a given initialization (source location and wind conditions), PMSS simulates the 

wind and dispersion fields for 2 hours. 
 

DEEP LEARNING MODEL 

 

A Deep Neural Network (DNN) is a non-linear statistical data modeling system that transforms a set of 

inputs into a set of outputs through multiple layers (sequence) of computations. The goal of DNNs is to 

infer from data the underlying phenomena that process the input values into the resulting outputs. The 

learning process consists in calibrating the parameters of the network to decrease the model error. The 

error function represents a distance metric between the model output and the observational data. In the 

learning phase, these parameters are updated by applying a gradient-descent algorithm using the training 



dataset. After each training cycle, the DNN model is validated on a disjoined set of data —validation 

dataset—. Lastly, the performance of the model is evaluated on another set —test dataset—, never used 

during training or validation. Note that the validation step is necessary to adjust the complexity of the 

DNN, which depends on its hyper-parameters, such as number of layers, units (called neurons) and 

connections between neurons of consecutive layers. Vapnik introduces the notion of model capacity, 

which conceptually represents the space of functions the DNN can fit (Vapnik, 1999). For example, 

increasing the number of layers and/or their neural density enables to fit more complex non-linear 

transformations. However, the obtained function may model the random noise in the training data rather 

than the governing principles. This problem, called overfitting, results in building models that explain 

well the data at hand, but fail in out-of-sample predictions. On the other hand, DNNs with low capacity 

are impractical to solve complex tasks and tend to underfit. Both overfitting and under-fitting models fail 
to forecast the correct output for unencountered data. 

 

In this work, the aim is to predict the integrated concentration field (2-D section) at the source height, 

over a time window starting from the instant of release up to 2 hours. We suppose that the atmospheric 

transport and dispersion depends on 1) The wind speed 𝑣 and direction 𝜃 above the urban canopy and 2) a 

2-D raster of the urban street map. These constitute respectively the output and inputs of a multivariate 

multiple regression problem.  

 

We proposed the learning model represented in Figure 2. Further details about the choice of the hyper-

parameters are motivated in the next section. The architecture is composed of a sequence of layers that 

incrementally build the pollution cartography through multiple non-linear transformations. The 
preprocessor performs several operations to prepare the data for the network’s next stage. First, it applies 

a bounding box of size ℝm×m  (𝑚 = 200) centered on the location of the source. By doing so, the source 

coordinates are not needed as input parameters, thereby simplifying the learning model. Other 

transformations are subsequently applied such as data scaling, data augmenting and vectorization of the 

input data. For the next stage, we use an encoder/decoder structure. The encoder block contains four 

identical sub-blocks composed each of a full connected layer (512 neurons, RELU activation and 

HeNormal initializer) and a batch normalizer. It casts the problem in a lower dimensional space, hence 

reducing the complexity of learning. Next, the decoder reconstructs the data in the original space through 

a full-connected layer of 𝑚2 units. Finally, a postprocessor rescales the data into the final output. Note 

that the loss function considered for the model training is the Mean Squared Error (MSE). The MSE of 

predictions on the training and validation datasets are monitored until convergence. An early stopping 

regularization method is adopted to avoid overfitting. 

 

 
Figure 2. Deep Neural Network Architecture for learning atmospheric transport and dispersion from synthetic data. 

 

PERFORMANCES ANALYSIS 

 

Hyper-parameters tuning 

 

As mentioned before, the learning capacity of a DNN is tightly linked to its hyper-parameters. A poor 

tuning leads to underfitting or overfitting, both reducing the inference performance of the trained model. 

Therefore, we propose a straightforward approach based on a grid search to select the number of layers 



and units of the encoder block. The DNN is trained for different combinations of layers count and their 

neural density. After convergence, the MSE is evaluated on the validation dataset, normalized with 

respect to the highest error obtained. We compile the results in Figure 3. We observe that the lowest 

MSE is achieved by an encoder composed of four hidden layers, each containing 512 neurons. Compared 

to the considered configurations, this model is the best estimator of pollution concentration subsequent to 

a point hazardous release and will be used in the remaining of the paper.       

 

 
Figure 3. Grid search benchmark. The best model (lowest normalized MSE) corresponds to the encoder block 

composed of four hidden layers, each containing 512 neurons. 

 

Use case study: Fictive hazardous release in the Opera district (Paris) 

 

We consider several fictive hazardous pollutant releases in the urban district of Opera in Paris. We want 

to use the previously trained model to urgently estimate the exposure dose in the area. Similarly as before, 

we generate the concentration maps associated with these situation using the highly realistic simulator 

PMSS. The computation domain is the Opera district of Paris located in the bounding box (𝑥, 𝑦) ∈
 [650250, 6863050] × [651450, 6864050] (Figure 4). It is a 600 × 500 grid with a space resolution of 

2 m. The emission source is considered in 222 different locations in 54 stationary weather conditions. 

 

 
Figure 4. Left: street map of the Opera district in Paris and the considered bounding box for the simulation domain; 

Right: raster representation. The different hypothetical source locations are pinpointed with red dots. 

 

To evaluate its accuracy, we use our trained model to predict the integrated concentration maps in about 
4000 different situations. First, the total computation time is 3 seconds (that is, 0.75 ms per prediction). 

The prediction MSE averaged over the 4000 instances is 0.96. This demonstrates the highly precise and 

fast prediction capability of the proposed DNN, reaching the realism of PMSS nearly instantaneously. 

Some examples of predicted and simulated integrated concentrations are shown in Figure 5. Because of 

the complex topography of urban areas, the airflow can be very turbulent. In particular, the interactions 

between the buildings and the airflow as well as the effect of street intersections that change the trajectory 

of the pollutant are accurately modeled by the trained DNN. Additionally, pollutant mass distribution 

throughout the whole domain is faithfully reproduced by the prediction. The learning model can therefore 

successfully determine the high risk areas (risky concentration levels of the pollutant that require 

evacuation for example). 

https://www.google.fr/search?q=faithfully&spell=1&sa=X&ved=2ahUKEwiR_tikgurvAhVB5uAKHYSIARoQkeECKAB6BAgBEDc


 
Figure 5. Integrated concentration map for different wind conditions and location of Opera district (logarithmic 

scale). Predictions and simulations are produced respectively by the trained DNN and PMSS. 

 

CONCLUSION 

 

This paper evaluates the learning potential of DNNs to model atmospheric transport and dispersion in 

complex urban areas using synthetic data. These data are generated using PMSS for several conditions in 
the French city of Grenoble. They are used to train offline a DNN to capture the physics of the dispersion 

phenomenon and forecast integrated concentration maps in real crisis events, given weather conditions 

and an urban geometry. Once the learning phase completed, the proposed DNN predicted nearly 

instantaneously and with high accuracy the concentration cartography in the newly encountered district of 

Opera (Paris).   

 

The actual DNN forecasts a 2-D horizontal concentration field at the height of the pollution source. In 

future works, we plan to fully utilize the 3-D simulations of PMSS (and not just 2-D sections) to teach a 

DNN how to predict a 3-D concentration field, jointly estimating the horizontal and vertical distributions 

of the pollutant.   
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