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Abstract: In pollutant dispersion problems, mapping concentrations in the first tens or hundreds of meters from the 
source still remains a modelling challenge. Large-eddy simulations (LES) are able to represent time and space variability 
of turbulent atmospheric flow, which is of prime importance to assess public short-term exposure. However, they remain 
far from real time and subject to uncertainties, in particular to parametric uncertainties associated with the large-scale 
atmospheric forcing and the emission source position. In this work, we show that an efficient and accurate metamodel of 
the tracer concentration information provided by LES and encapsulating their associated uncertainties can be built using 
appropriate statistical tools combining machine learning and principal component analysis. We present a proof-of-
concept study based on a simplified but representative flow configuration (two-dimensional flow around a surface-
mounted cube) using the AVBP LES solver and testing a variety of metamodels (linear regression, Gaussian processes, 
random forest, gradient boosting, etc.). Results reinforce the idea that for sufficiently statistically-converged quantities 
of interest and for a sufficiently large LES data set, a compound surrogate model can succeed in synthesizing information 
from the LES in the whole computational domain (with a Q2 predictivity coefficient above 90 %). Downstream of the 
obstacle, the Q2 coefficient of all metamodels reaches excellent results over 90%. Upstream, the tracer concentration is 
subject to strong discontinuities; combining metamodels allows to guarantee a good predictivity coefficient over 75%. 
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INTRODUCTION 
Industrial accidents often involve a pollutant plume dispersion potentially harmful to human health, economy 
and/or environment. A new generation of decision support tools at the interface between modeling and 
statistical learning could be designed to help monitoring an emergency by accurately simulating the plume 
dispersion and accounting for a range of possible scenarios at future time frames.  
 
Near-field plume dispersion is controlled by complex turbulent flow dynamics enhanced by complex 
geometry, for example in urban areas where separation and recirculation zones are induced by the presence 
of buildings of different height and geometry. Computational Fluid Dynamics (CFD) approaches, based on 
Reynolds-averaged Navier Stokes (RANS) and Large-Eddy Simulation (LES), is now becoming popular to 
accurately represent these processes (Philips et al., 2013). However, CFD approaches remain 
computationally intensive and therefore far from real time. Replacing the CFD model by a metamodel (i.e. a 
statistical model that has learnt the relationship between uncertain inputs and some quantities of interest over 
a CFD data set) can partly overcome this limitation. García-Sánchez et al. (2017) have demonstrated the 
capacity to train a metamodel based on polynomial chaos expansion, which mimics the RANS model 
response for a wide range of parametric variations on three uncertain parameters: the upstream roughness 
height, the wind direction and magnitude. Once the training step is done using a RANS data set, the resulting 
metamodel can be used to estimate at no further cost, the metamodel model response for a new set of 
parameters. This was illustrated for the “Joint Urban 2003 field experiment” in Oklahoma City, which is 
fully representative of urban geometry complexity.  
The objective of this work is to provide a detailed comparison of metamodels to identify which are the most 
relevant for pollutant dispersion and in particular if polynomial multi-linear regression approaches as in 



 

García-Sánchez et al. (2017) are sufficient to reproduce the CFD response to parametric variations. We 
consider here a two-dimensional canonical case (i.e. a two-dimensional flow around a surface-mounted cube) 
to compare a variety of metamodels, evaluate their performance and assess their robustness with respect to 
the training set size and data noise (associated with the time-average process). The number of uncertain 
parameters is kept low: three scalar parameters are considered: the inlet wind speed and the emission source 
position. The quantity of interest is the time-averaged tracer concentration affected by unsteady flow features, 
such as vortex shedding. The numerical data set is built using the AVBP LES solver 
(http://www.cerfacs.fr/avbp7x/). In the present study, the objective is to design a robust and accurate 
metamodel to represent the AVBP response to variations in the three uncertain parameters. This paper is 
structured as follows: i) the numerical case study and setup are introduced; ii) the metamodelling strategy is 
presented; and iii) the metamodel results are analysed. 
  
NUMERICAL CASE STUDY AND SETUP 
The test case is representative of a passive tracer dispersion in the lower part of the atmospheric boundary 
layer, which is modelled as an open two-dimensional computational domain in the reference frame (x, z) 
(Figure 1). A single obstacle with side length H = 1 m is considered. The domain consists of a rectangle 31H 
long (inlet flow direction x) by 10H high (vertical direction z). The domain height of 10H was chosen to 
avoid upper boundary effects. 
 
 

 
 
 
 
 
 
 
 

Figure 1. Scheme of the two-dimensional computational domain with boundary conditions. Example of a mean tracer 
concentration field is given in the background for a source centered at (-2.26, 0.98) and an inlet wind speed                  

of 5.58 m s-1. Associated instantaneous snapshots of the tracer concentration fields are also given. 
 

A steady and uniform air flow is injected by the inlet boundary. The inlet wind speed is uncertain, with  
Uinlet∈	[1,10] m s-1. The incoming flow is perturbed by the presence of the obstacle, inducing unsteady flow 
features, primarily vortex shedding. A tracer emission point-source (propylene here) is positioned upstream 
of the obstacle with a constant emission rate. The passive tracer is numerically injected in the form of a 
Gaussian function. The Gaussian source center is located upstream of the obstacle and is uncertain, with     
xsrc ∈	[-3.5,	-0.2]H horizontally and zsrc	∈	[0.2,	2]H vertically. 
 
AVBP is used to solve the compressible Navier-Stokes equations with an artificial compressibility approach 
and with a fine mesh grid made of 240,000 triangular elements. A uniform spatial resolution of 0.04H (4 cm) 
was adopted to solve the flow around the obstacle with 25 grid points in each direction. A third-order accurate 
advection of the Taylor-Galerkin family is used. NSCBC (Navier-Stokes Characteristic Boundary 
Conditions) are used to properly handle acoustics at the inlet and outlet. The upper boundary models an 
atmospheric free surface through a plane symmetry condition. The lower boundary (the ground surface and 
the obstacle) is modelled as an adiabatic wall with a zero velocity. A constant pressure condition is imposed 
at the outlet. 
 
 



 

METAMODELLING STRATEGY 
The objective in this work is to design a metamodel able to predict the mean (time-averaged) tracer 
concentration field (containing Nnodes mesh nodes) as a function of the three uncertain parameters:  

 
     (1) 

    
M is referred to as the response surface where the quantities of interest are the scaled concentration 
coefficients at different mesh nodes obtained from the uncertain parameters. The scaled concentration is 
defined by K = c/c0 with c the time-averaged concentration and c0 the normalizing concentration:  
        
       (2) 
 

 
Only the nodes where the ensemble mean tracer concentration is above 𝐾 ≥ 4.59 × 1023(10-2 kg m-3) inside 
the box [-4, 10]H×[0, 4]H are considered in the metamodeling procedure, resulting in Nnodes≈16,000. Outside 
this box, concentrations are very small, falling below the solver numerical accuracy, and are thus discarded 
for metamodelling.  
 

 

Figure 2. Scheme of the LES data set generation and PCA postprocessing before metamodeling. 

 
To perform a detailed analysis of the metamodel performance, a very large ensemble of LES (n = 700) is 
generated. The response surface is sampled using a quasi Monte-Carlo approach, assuming uniform statistical 
distributions for the three parameters given the range of variations in Equation 1. A low-discrepancy Halton’s 
sequence is adopted in this study to obtain a homogeneous sampling of the low-dimensional parameter space. 
AVBP is run for each sampled set of parameters. The ensemble is segmented into a training set (70% of the 
LES, i.e. 489) and a validation set (30% of the LES, i.e. 211). Each resulting mean tracer concentration field 
K is decomposed using Principal Component Analysis (PCA) to reduce the output dimension from 
Nnodes≈16,000 to 50 principal components (Figure 2). Tests have shown that this is enough to accurately 
represent the tracer concentration over the whole domain. To limit the computational cost related to the LES 
data set generation, the AVBP simulation time is adjusted according to the inlet flow velocity Uinlet. Higher 
inlet velocities imply faster asymptotic convergence of the mean tracer concentration. A LES lasts from 150 s 
to 1,600 s in physical time to reach approximately a fixed number of 30 vortex shedding based on an 
estimated Strouhal value of St = 0.02. Using this approach, running 100 LES requires about 40,000 CPU 
hours on CERFACS’ supercomputer. 
 
Different regression metamodels are trained to approximate the response surface in Equation 1 (via the SciKit 
Learn library) using the LES training data set: multi-linear regression with and without penalty (Ridge, 
LASSO/Least Absolute Shrinkage and Selection Operator, OMP/Orthogonal Matching Pursuit), decision 
trees (random forest and gradient boosting), Gaussian processes. All of them are put in competition to 
represent the relation between each PCA component and the three uncertain parameters. In the resulting 



 

compound metamodel, we only keep a unique ‟champion” metamodel per PCA axis, i.e. the one that achieves 
the best performance according to the Q2 predictivity coefficient (Figure 3): 
	

	 	 	 (3)		 	 	 	

 
 

with pi(K) and pi(𝐾7) the projected components on the ith PCA axis of the AVBP prediction K and a given 
metamodel prediction 𝐾7,	respectively, over the validation data set. The Q2 coefficient gives the percentage 
of the variance explained by the metamodel (a perfect metamodel features Q2 = 1; in practice, a Q2 coefficient 
above 90% is considered as excellent). In this work, the performance of the compound and standalone 
metamodels is quantified using the Q2 metrics on tracer concentrations at the Nnodes nodes over the validation 
data set. It is therefore a spatial field. To help the analysis of the results, different Q2 statistics are computed: 
the spatially-average value of the Q2 coefficient over the computational domain (the global Q2) but also over 
limited-area regions (upstream, around the obstacle and downstream).  
 

 

 Figure 3. Scheme of the metamodeling procedure. 
 
RESULTS 
Figure 4 presents the spatial field of the Q2 coefficient obtained for the compound metamodel. Table 1 
presents the associated Q2 statistics per limited-area domain. Results show a good performance of the 
compound metamodel in the whole computational domain, except in some upstream areas where the Q2 is 
locally very low. This is consistent with a global Q2 coefficient higher than 94%. The best Q2 performance 
is obtained in the area downstream (the downstream Q2 statistics is above 97%), while the Q2 statistics 
decreases when moving upstream (the upstream Q2 statistics remains above 80%). The dispersion process 
occurring downstream makes the mean tracer concentration field smoother for all sets of uncertain 
parameters. This is easier to capture by the tested metamodels than upstream of the obstacle, where the mean 
tracer concentration fields locally feature high values in distinct areas that depend on the tracer emission 
source location. Because only few realizations are considered in this area in the validation data set, the 
associated variance is low, prediction errors are penalizing, resulting in a poor Q2 performance. 
 
 

  
 
 
 
 
 
 
 

 
 

Figure 4. Spatial field of the Q2 predictivity coefficient (Equation 3) using the compound metamodel. 
 

 
Table 1 highlights the added value of the compound metamodel compared to standalone metamodels (when 
all PCA components are predicted using the same metamodel). The compound metamodel obtains the best 
performance for all Q2 statistics. There is no much difference in the downstream area (where all metamodels 
reach a Q2 statistics above 97%). However, having a compound metamodel limits the drop in performance 
in the upstream area: linear regression without penalty and Gaussian process regression feature an upstream 
Q2 statistics equal or lower than 60%, while this statistics remains above 80% for the compound metamodel 
(gradient boosting follows closely at 78%). For the 90% quantile of concentration maximum residual errors, 
the compound metamodel value is K = 3.94, which is better than gradient boosting (4.49), linear (5.64) and 
Gaussian process regressors (6.60). Table 1 also shows that the performance of the compound metamodel 



 

remains the best among all tested metamodels and relatively good when reducing the size of the training set 
(from 489 to 100 LES) or when introducing noise in the training set (by dividing by two the AVBP simulation 
time). There are now more differences between the performance of the compound metamodel and that of the 
gradient boosting metamodel, especially in the upstream area. The compound metamodel good behaviour is 
explained by its flexibility in adjusting to PCA components that are difficult to predict. The PCA components 
1 to 4 are best predicted using Gaussian process regression, while the PCA components 5 to 11 are better 
predicted by gradient boosting. This implies that Gaussian processes better represent large-scale tracer 
concentration structures, while gradient boosting is more adapted to track sharp concentration gradients near 
the tracer emission source position. Figure 5 gives an example of the compound metamodel solution for a 
validation case. The predicted mean tracer concentration is compared to the AVBP solution. Downstream 
plume dispersion is well predicted. The upstream tracer concentration is slightly under-predicted in the wake 
of the emission source. There is also some noise due to accumulated prediction errors on the high-level PCA 
components upstream. 
 

Table 1. Comparison of the metamodel Q2 statistics for a validation data set made of 211 LES. In brackets are 
indicated the Q2 statistics obtained when dividing by two the AVBP time window, in square brackets the statistics 

obtained when the training data set is reduced from 489 to 100 LES. 
 

Metamodel/Q2 Global Q2 Upstream Q2 
x ∈ [-4, -0.5]H 

Obstacle Q2 
x ∈ [-0.5, 1.5]H 

Downstream Q2 
x ∈ [1.5, 10]H 

Compound 94% (93%) [85%]  80% (78%) [62%]  94% (93%) [80%] 97% (96%) [91%] 
Linear regression (without penalty) 90% (89%) [66%]  60% (60%) [-43%]  83% (82%) [44%] 97% (96%) [93%] 
Gradient boosting 93% (92%) [80%]  78% (78%) [52%]  92% (92%) [66%] 97% (95%) [88%] 
Gaussian process regression 87% (86%) [2%]  41% (40%) [-320%]  81% (81%) [-37%] 98% (96%) [80%] 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Mean tracer concentration field for Uinlet = 5.58, xsrc = -2.26, ysrc = 0.98 for (top panel) the AVBP solution 
and (bottom panel) the compound metamodel prediction. 

 
CONCLUSION 
The compound metamodel approach has shown its ability to reconstruct time-averaged information from 
LES on a simplified pollutant dispersion case. Mixing different metamodels (Gaussian process and gradient 
boosting) allows more PCA components to be considered upstream of the obstacle to improve the metamodel 
prediction and robustness to the training set size and noise. Future work includes adding a temporal 
dimension to fully take advantage of the LES, and applying it to more realistic cases.   
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