

Development of BUILD (Building Urban and Industrial Lagrangian Dispersion), a new operational dispersion model

Lionel Soulhac, Guillevic Lamaison, Perrine Charvolin, Mehdi Slimani, Patrick Armand, Luc Patryl

20th Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Conference

Outline

DE LA RECHERCHE À L'INDUSTRI

- **1**. Introduction
- 2. URBAN geometrical preprocessor
- 3. Parameterized flow models
- 4. Lagrangian dispersion model
- 5. First validations and applications
- 6. Conclusions

Atmospheric dispersion modelling for emergency response

- Accidental or deliberate releases of NRBC material
 - In complex built-up areas like urban or industrial sites
- First responders and decision makers need fast and relatively precise estimates of the contaminated and dangerous area

Operational modelling approaches for built-up and urban areas

Network of street-canvons

ollutant budget in each stree

sian plume model for transpo

- Simple Gaussian plume or puff models (ALOA, PHAST, etc.)
- Diagnostic wind flow models coupled with Eulerian or Lagrangian dispersion models (PMSS, QUIC-URB, etc.)
- CFD based models (RANS or LES Navier-Stokes, Lattice-Boltzmann)
- Network of streets models
 - SIRANE : box canopy + Gaussian plume steady model (Soulhac et al., 2011, 2012)
 - SIRANERISK : box canopy + Gaussian puff unsteady model (Soulhac et al., 2016)

1. – Introduction

DE LA RECHERCHE À L'INDUSTRIE

Advantages and limitations of the SIRANERISK approach

- Fast model, well adapted for regular network of streets urban configurations
- Limitation of the Gaussian approach to deal with non regular urban patterns, suburban or industrial geometry (group of obstacles)

Development of a new atmospheric dispersion model

• To overcome the previous limitations and extend the range of possible applications, keeping the constraint of a low computation time

→ BUILD – Building Urban and Industrial Lagrangian Dispersion model

- Main characteristics of the model
 - Diagnostic parametrizations of the flow
 - Urban dense Canopy : "SIRANE-like" flow description with improvements for the flow and turbulence field inside streets
 - Obstacles : wake recirculation model
 - Particles stochastic Lagrangian dispersion model to allow a continuous description of the concentration field

2. – URBAN geometrical preprocessor

URBAN – Universal Recognition of Buildings Area and Network

Gridding of the domain with 1km x 1km tiles, with 1m resolution

⁴⁴⁰ m 445 m 450 m 455 m 460 m 465 m 470 m 475 m 480 m

0 m 100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1

2. – URBAN geometrical preprocessor

URBAN – Universal Recognition of Buildings Area and Network

Urban buildings image processing

Image processing toolbox to analyze the building height raster images

3. – Parameterized flow models

Zonal parameterizations of the wind and turbulence field

- Dense canopy and street-canyons
- Obstacles wake recirculations
- Roughness sublayer
- Atmospheric boundary layer

3. – Parameterized flow models 3.1. – Dense canopy and street-canyons

Uniform longitudinal mean velocity

The longitudinal velocity is quite uniform in the street, only dependent on the component of the flow parallel to the street

$$\overline{u}(y,z) \!=\! u_{street} \!=\! K_{m}K_{H}u_{*}\cos\!\left(\phi_{ext}\right)$$

K_m and K_H are parameterized according to the analytical model of Soulhac et al. (2008)

3. – Parameterized flow models 3.1. – Dense canopy and street-canyons

Transverse mean velocity field

- Linear model for the flow
- Street coordinates

- x/H-0.4 0.4 0.2 0.8 0.1 \overline{W}/U_{∞} 0.6 0 0.4 -0.1 0.2 -0.2 0 0.1 0.2 -0.2 -0.1 0 \overline{v}/U_{∞} Wind tunnel experiments of Salizzoni et al. (2011)
- Assumption of separated variables

 $\begin{cases} \overline{v}(y,z) = v_{street} f_{v}(\eta) g_{v}(\zeta) \\ \overline{w}(y,z) = -w_{street} f_{w}(\eta) g_{w}(\zeta) \\ with \end{cases} \begin{cases} f_{v,lin}(\eta) = 1 - \eta^{2} \\ g_{v,lin}(\zeta) = \zeta \\ f_{w,lin}(\eta) = \eta \\ g_{w,lin}(\zeta) = 1 - \zeta^{2} \end{cases}$

Velocity scale v_{street}

$$\boldsymbol{v}_{street} = \boldsymbol{K}_{m}\boldsymbol{K}_{H}\boldsymbol{u}_{*}\,sin\big(\boldsymbol{\phi}_{ext}\,\big)$$

Continuity equation

$$\frac{v_{street}}{W} = \frac{w_{street}}{H}$$

9

3. – Parameterized flow models

3.1. – Dense canopy and street-canyons

Transverse mean velocity field

• Vector field

DE LA RECHERCHE À L'INDUSTRI

 Validation against wind tunnel experiments

3. – Parameterized flow models 3.1. – Dense canopy and street-canyons

Parametrization of turbulence parameters

- Uniform values for k and ε , scaled on u_{*}
- For example, turbulent kinetic energy k is modelled with:

$$\frac{k_{street}}{u_*^2} \simeq 0.5$$

Fig. 11 Vertical and horizontal profiles of t.k.e. profiles within the cavity normalized with U_{∞} (a and b), ΔU (c and d) and u_* (e and f). Same symbols as in Fig. 10

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Zone II

Zone III

Zone II Zone III

Recirculation in the wake of an isolated obstacle

Zone I

top view

Zone I

Flow around an obstacle

- From Hosker (1985)
 - Recirculation length

side view

Zone IV

Zone IV

DE LA RECHERCHE À L'INDUSTRIE

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Analytical model of advection-diffusion of the velocity defect in the wake of a rectangular building

$$\frac{\Delta U}{U_0} = \frac{1}{4} \left[erf\left(\frac{y + W/2}{\sqrt{2}\sigma_y}\right) - erf\left(\frac{y - W/2}{\sqrt{2}\sigma_y}\right) \right] \left[erf\left(\frac{z + H}{\sqrt{2}\sigma_z}\right) - erf\left(\frac{z - H}{\sqrt{2}\sigma_z}\right) \right]$$

• Application for different building aspect ratios

13

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Generalization for a building of any shape

- Based on the image of the building, advection-diffusion process of the velocity defect is emulated by translationblurring of the image
- The recirculation area is defined by thresholding the grayscale velocity defect field

B&W image of a building

Grayscale velocity defect field

Recirculation area 14

Cea

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Validation against analytical solution for a rectangular building

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Application on a 1km x 1km tile for 2 wind directions

From the same algorithm, we can also evaluate

Recirculation height

Coordinate $\boldsymbol{\eta}$ inside the recirculation

3. – Parameterized flow models 3.2. – Obstacles wake recirculations

Mean velocity field inside the recirculation zone

Recirculation shape defined by length and local height

• By analogy with the linear recirculation flow model in street

3. – Parameterized flow models

Zonal parameterizations of the wind and turbulence field

- Dense canopy and street-canyons
- Obstacles wake recirculations
- Roughness sublayer
- Atmospheric boundary layer

4. – Lagrangian dispersion model

Particles stochastic Lagrangian dispersion model

- Advection of particles
 - Advection $X_{i}(t+dt) = X_{i}(t) + U_{i}(t) dt$ $U_{i}(t) = \overline{U}_{i}(t) + U_{i}'(t)$ $U_{i}'(t+dt) = U_{i}'(t) + dU_{i}'$

 $dU'_i = a_i(\vec{X},\vec{U}',t) + \sum_i b_i(\vec{X},\vec{U}',t)d\xi_j$

Stochastic differential equation

 $\text{'ith} \quad \begin{cases} a_{i} = -\frac{U_{i}'}{T_{L}i} + \frac{1}{2} \frac{\partial \sigma_{ui}^{2}}{\partial x_{i}} + \frac{U_{i}'}{2\sigma_{ui}^{2}} \left(\overline{U}_{j} \frac{\partial \sigma_{ui}^{2}}{\partial x_{j}} \right) \\ b_{ij} = \delta_{ij} \sqrt{C_{0} \epsilon} \end{cases}$ C₀ is the Kolmogorov constant

19

 $T_{Li} = \frac{2\sigma_{ui}^2}{C\epsilon}$

4. – Lagrangian dispersion model

Wall treatment

- Elastic reflection on solid walls
- Calculation of the reflection on vertical walls using the gradient of the building distance field:

$$\vec{x}_{new} = \vec{x} + 2 |d_b| \overline{grad}(d_b)$$

5. – First validations and applications 5.1. – Isolated 2D obstacle

See the more detailed presentation of Slimani et al. (H20-012)

Experimental set-up

Wind tunnel experiment of Gamel PhD thesis (2015)

- 2D surface mounted obstacle, perp. to the wind
- Boundary layer flow over a rough wall
- Line source at 1,5H downstream of the obstacle

DE LA RECHERCHE À L'INDUSTR

Experimental data

Wind tunnel experiment of Gamel PhD thesis (2015)

Application of the URBAN geometrical preprocessor

Computational time for 1 direction = 1.5 sec
 (Dell Precision Mobile 7530)

Recirculation shape and associated parameters

Recirculation index

DE LA RECHERCHE À L'INDUSTRIE

BUILD concentration field

Computational time = 11.1 sec

Comparison with wind tunnel and LES data

Dimensionless concentration field

DE LA RECHERCHE À L'INDUSTRIE

5. – First validations and applications 5.2. – Release on an industrial area

Real industrial site with 215 obstacles in the domain

- Feyzin refinery
- Canopy with intermediate density of buildings

DE LA RECHERCHE À L'INDUS

5. – First validations and applications 5.2. – Release on an industrial area

Application of the URBAN geometrical preprocessor

- Computational time for 1 direction = 31 sec
 (Dell Precision Mobile 7530)
- Recirculations shapes and associated parameters

Recirculation index

Recirculation height

η coordinate

0.01

5e-5 2e-5 1e-5

5. – First validations and applications 5.2. – Release on an industrial area

BUILD concentration field

Computational time = 19.52 sec (100 000 particles)

- A new operational model is developed for atmospheric dispersion of accidental or deliberate releases in built-up areas
- Based on
 - Enhanced network of streets parameterization of the flow in dense canopy
 - New building wake recirculation model
 - Roughness and surface boundary layer model
- First validations and applications have shown encouraging results and numerical performances
- Work in progress...