Quantifying uncertainties in air pollutant exposure modelling from accidental point releases,

John G. Bartzis¹, Ioannis. A. Sakellaris¹, Thalia Xenofontos ¹, Spyros Andronopoulos²

¹University of Western Macedonia, Dept. of Mechanical Engineering, Sialvera & Bakola Str., 50100, Kozani, Greece.

²Environmental Research Laboratory, INRASTES, NCSR Demokritos, Patriarchou Grigoriou & Neapoleos Str., 15310, Aghia Paraskevi, Greece.

Motivation

- In emergency response or/and associated risk assessment, exposure quantification is essential in terms of :
- expected value (ensemble average, most probable),
- associated uncertainties

IDEALLY

Quantify exposure in terms of pdf/cdf

Exposure Modeling Uncertainties

Uncertainties due to wind variability
 Uncertainties due to modeling approach and numerics
 exposure time induced inherent uncertainties

<u>From past experience :</u>

 the wind direction uncertainty seems to be of major importance

The Present General Problem

Consider a continuous point source with a constant release rate

Problem 1:

Assume the source release rate as known and predict exposure related parameters and associated uncertainties at selected positions downstream

Problem 2:

Assume the source term unknown and predict the source release rate and its uncertainty from exposure related parameter signals at specific positions downstream.

The new approach

THE OBJECTIVE

the whole approach to be <u>relatively simple</u> with substantially low computational time even for complex problems with the aim to be <u>manageable</u> by the user even at operational level.

THE BASE

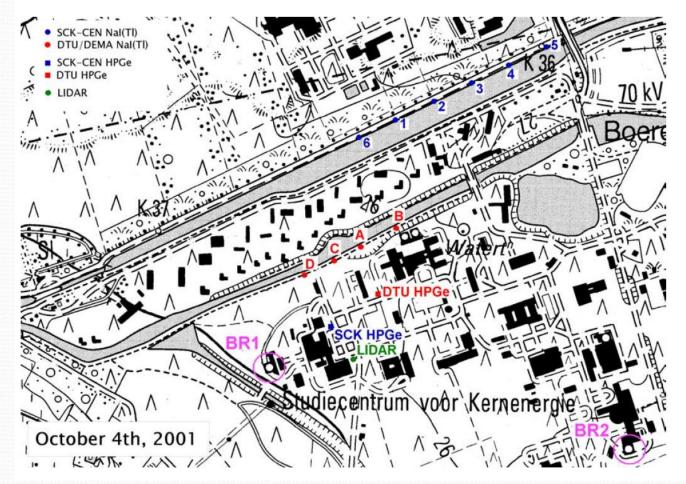
- direct use of the real signals (or/and model pdf) concerning wind speed and direction or/and exposure related parameters.
- restrict computation to steady state reference wind speed and source term conditions
- > adopt to real conditions via **proper scaling** reflecting current expertise and
- treat relevant parameters involvement via respective pdf creating a novel tool for this purpose

A FIRST APPLICATION : THE RADIOLOGICAL MOL EXPERIMENT

The real-scale MOL experiment

- Routine releases of ⁴¹Ar from the 60-m high stack of the BR1 research reactor at the Belgium Nuclear Research Centre (SCK•CEN, Mol); constant release rate 4.27×10⁷ Bq/s
- Radiation measured near ground at downwind distances up to 1500m from the release point, by sensors in arrays perpendicular to main advection direction
- Dates of the experiment:
 - Wed 3/10/2001
 - Thu 4/10/2001
 - Fri 5/10/2001

The real-scale MOL experiment (2)


- Available radiation measurements:
 - Fluence rate at 1-min resolution by 4 NaI(T1) detectors of the Danish Emergency Management Agency (DEMA)
 - Counts per sec at 1-min resolution by 4 NaI(T1) detectors of the SCK•CEN
 - Fluence rate at variable time resolutions by Germanium detector of the Danish Technical University

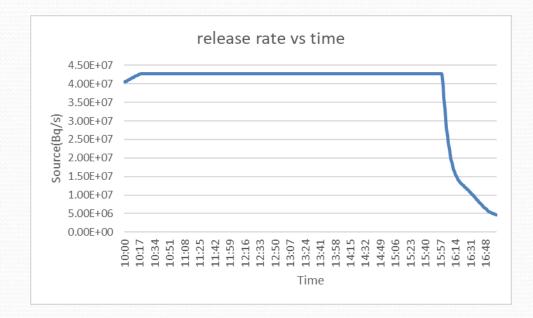
The real-scale MOL experiment (3)

- Meteorological measurements:
 - From SCK•CEN weather-mast
 - At 1-min resolution:
 - Wind speed at 24, 69, 78, 114 m
 - Wind direction at 24, 48, 69, 114 m
 - Air temperature at 8 m
 - At 10-min resolution
 - Wind speed at 69, 78 m
 - Wind direction at 69 m
 - Air temperature at 8, 24, 48, 78 114 m
 - Pressure
 - Atmospheric stability class

The MOL Experiment Layout (4/10/01)

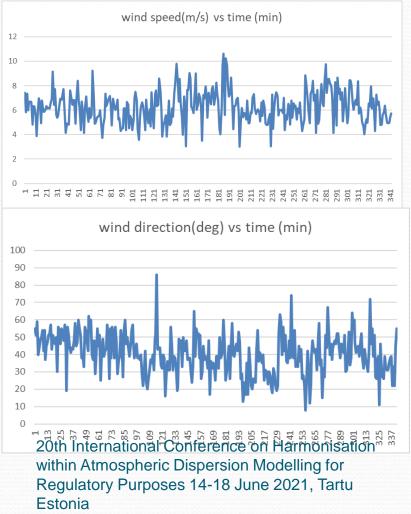
M. Drews, H. K. Aage, K. Bargholz, H. Jørgensen, U. Korsbech, B. Lauritzen, T. Mikkelsen, C. Rojas-Palma and R. Van Ammel, Measurements of plume geometry and argon-41 radiation field at the BR1 reactor in Mol, Belgium, Report NKS-55, ISBN 87-7893-109-6, February 2002

The MOL Experiment:

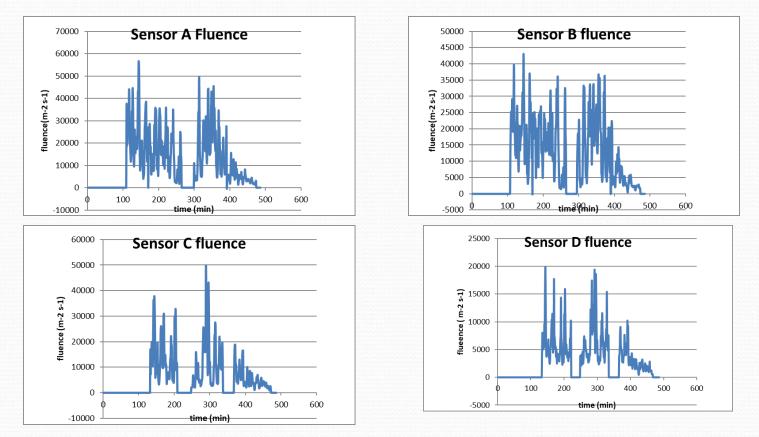

The present Application - DATA

- The study time interval : 4 Oct, 10:18 16:00
- Source release rate : 4,27e+07 Bq/s
- Wind speed and direction 1 min signals at 69 m height
- Fluence rate 1 min signals from the 4 NaI(T1) detectors {Horizontal distance from the source : sensor A: 344 m sensor B: 433 m sensor C: 287 m sensor D: 231 m]}

The MOL Experiment: The present Application= MODELING


- A simple Gaussian model is used to model pollutant dispersion.
- In the model, the fluence rate is estimated following Andronopoulos and Bartzis (2010) and Gorshkov et al. (1995).

The Mol Experiment The source measured at height 60m



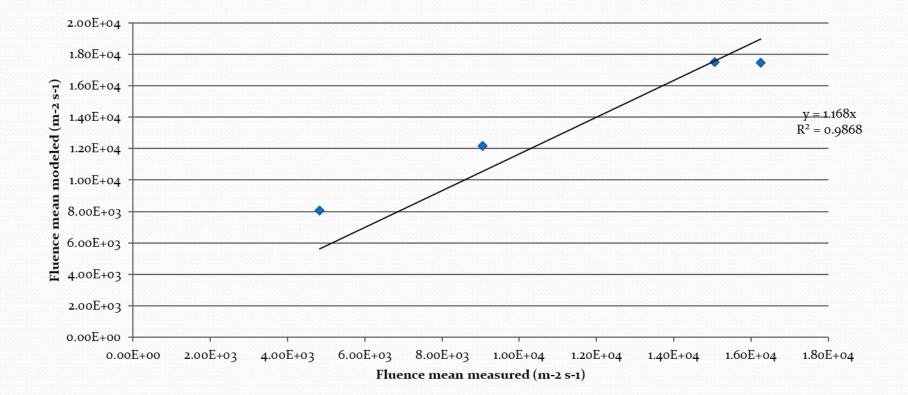
The study time interval : 40ct, 10:18 - 16:00

The Mol Experiment The wind time series(height 69m) with time resolution Δτ=1 min

The Mol Experiment Sensors Fluence rate(m-2 s-1) with a time resolution Δτ =1 min

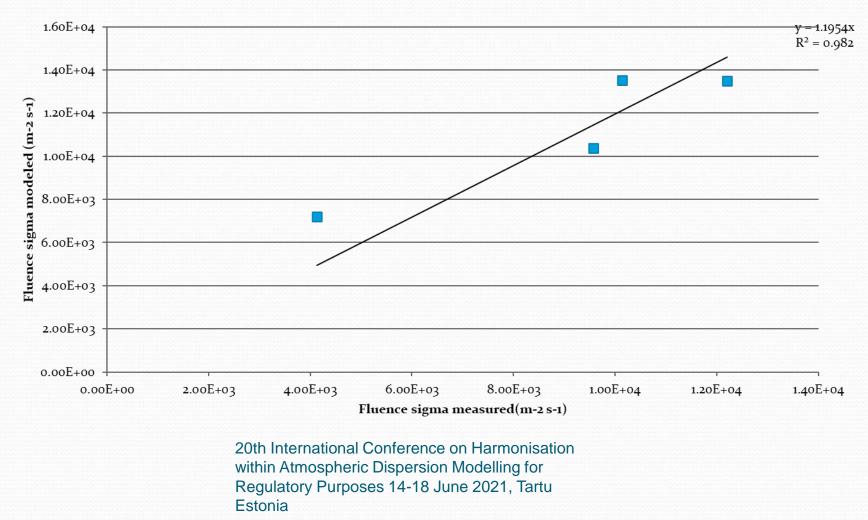
The Mol Experiment The two modeling problems Problem 1:

Assume the source release rate as known.

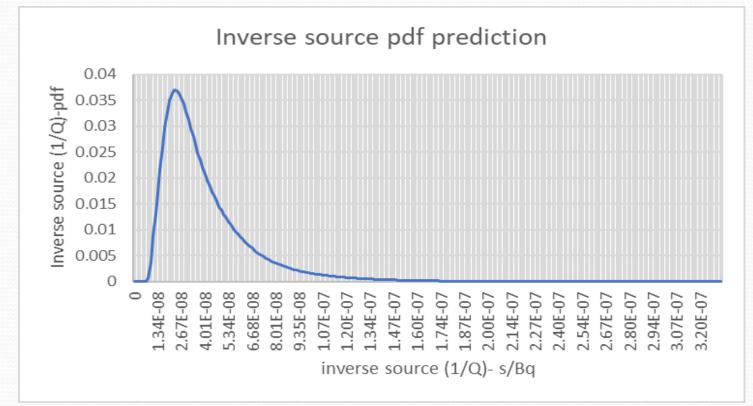

Predict fluence rates at the four sensors and compare with the measured values

Problem 2

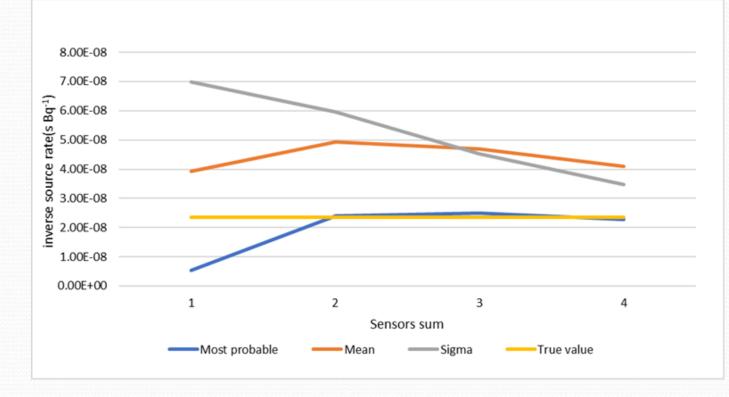
<u>Assume the source release rate as unknown</u>.


Predict the source release rate from the four(4) fluence rate signals

The Mol Experiment Problem 1 Fluence mean values comparisons


The Mol Experiment Problem 1

Fluence standard deviation comparisons



The Mol Experiment Problem 2

The source release rate prediction

The Mol Experiment Problem 2 Inverse source term prediction vs number of sensors involved

Concluding Remarks

- Searching for more practical approaches, the exposure quantification in terms of expected value and its uncertainties has been put in a new basis.
- Applying this new concept in the Mol experiment an experiment under real environmental conditions- the comparison results went beyond expectations!
- It is noticed that the new concept indicates its advantage as the method to predict the source term
- The whole approach is under development and the present application is pressing to go forward.

Acknowledgements

The authors would like to thank Bent Lauritzen from Risoe DTU National Laboratory for Sustainable Energy, Denmark, for supplying the data from the Mol 41Ar Experiment.

ARISTOTELES

Ευχαριστώ Thank you