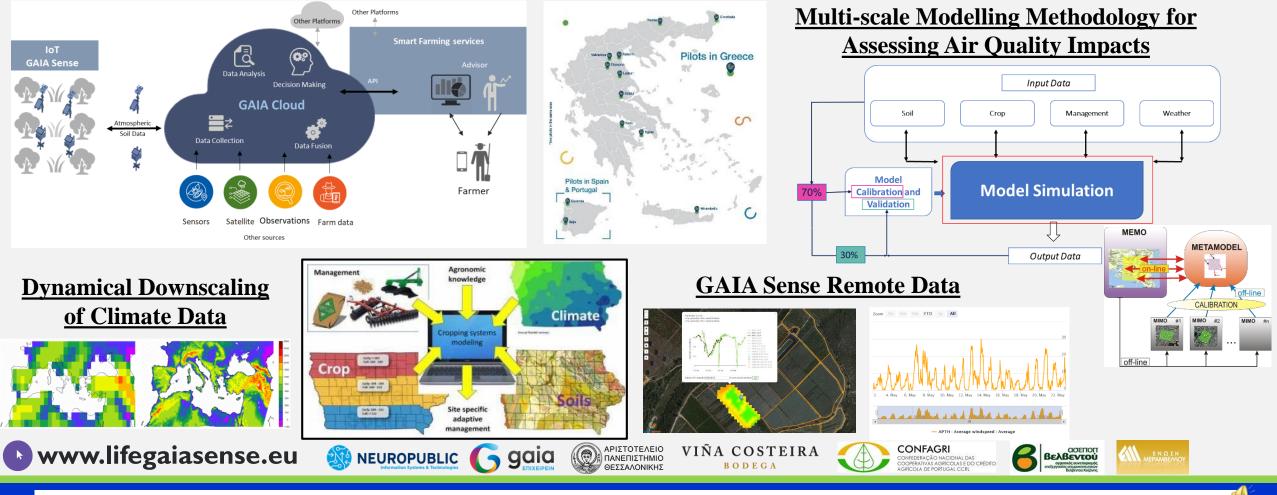


MODELLING METHODOLOGY FOR ASSESSING ATMOSPHERIC IMPACTS FROM SMART FARMING APPLICATION

Nicolas Moussiopoulos, George Tsegas, Fotios Barmpas and Eleftherios Chourdakis

Laboratory of Heat Transfer and Environmental Engineering, Aristotle University University Campus, P.O. Box 483, 54124 Thessaloniki, Greece.


LIFE GAIA Sense: Air Quality Impact Assessment

"Smart Farming" solution for reducing the consumption of natural resources, as a way to protect the environment and support Circular Economy agriculture models.

lifegaiasense

Environmental modelling for impact assessment

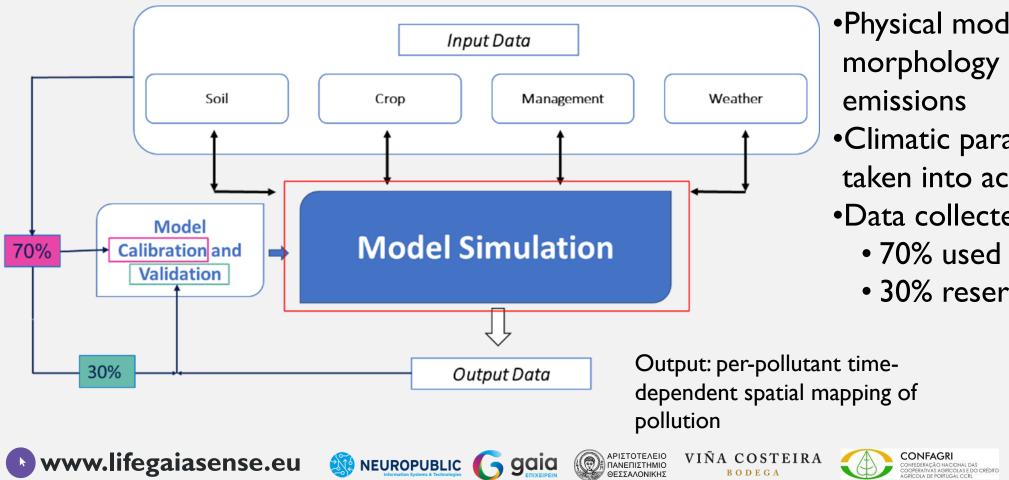
Objective:

Risk assessment of air, soil and water pollution due to agrochemicals and fertilizers applied in irrigated agriculture

Means:

Numerical modelling processes:

- Atmospheric emissions
- Chemistry and deposition
- > Nitrogen soil processes, ammonium exchange uptake and mass transport
- Quality assurance of numerical modelling:
 - Calibration
 - Validation and verification (data obtained from sub action B7.1)
- $\square Account$ for extreme weather events impacts frequency increase
- **LCA** for the estimation of pollutants fate using international standards and eco- indicators

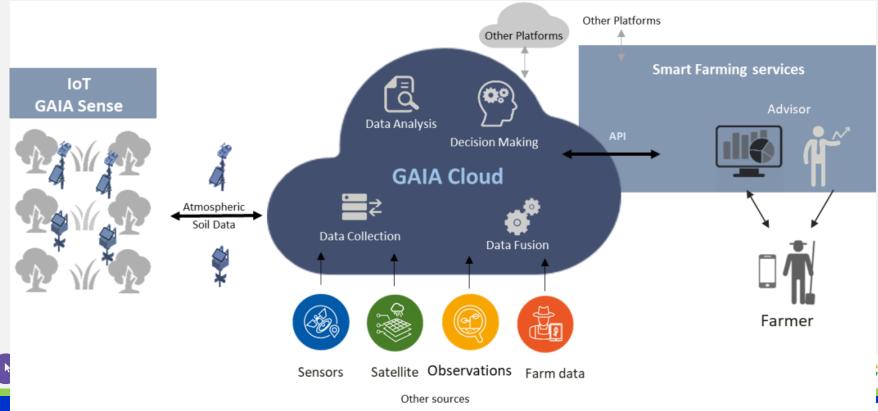


Modelling Overview

•Physical modelling based on morphology and pollutant emissions

- •Climatic parameters explicitly taken into account
- •Data collected in near-real time:
 - 70% used for calibration
 - 30% reserved for validation

The project LIFEGAIASense is co-funded by the LIFE Programme of the European Union under contract number LIFE17 ENV/GR000220



Monitoring Input data

A wide range of technology solutions are used to provide high resolution data for monitoring and modelling purposes in the SF application parcels. In this way, high spatial and temporal resolution data are available to scientists for analysis and to farmers for everyday information purposes.

Remote sensing:

Earth observation data from Copernicus/ESA **Field:**

atmospheric and soil data from Gaiatrons

Eye:

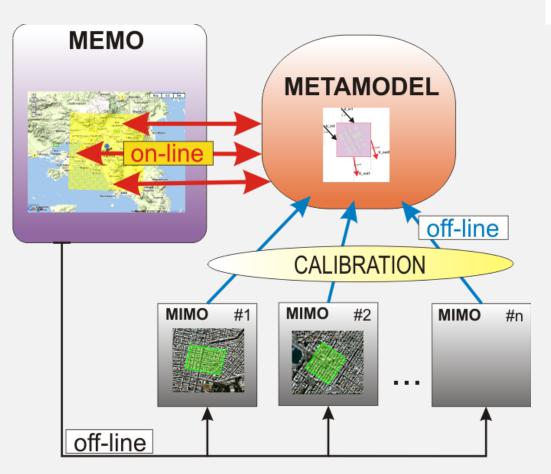
field observations, lab analyses

<u>Farm:</u>

confact confectations activity data

MEMICO: two way meso – micro coupling in three steps

□ <u>Ist step:</u>


Boundary Conditions calculated from an initial MEMO run are used for multiple MIMO cases (off-line process)

□ <u>2nd step:</u>

The response of each microscale domain is used as calibration input for an interpolating metamodel

□ <u>3rd step:</u>

The calibrated metamodel is fast enough to be used in on-line coupling with MEMO

CONFAGRI

βελβεντού

The project LIFEGAIASense is co-funded by the LIFE Programme of the European Union under contract number LIFE17 ENV/GR000220

VIÑA COSTEIRA

Input data: Emissions of agricultural atmospheric pollutants (1)

 Emission factors from the EMEP/EEA air pollutant emission inventory guidebook 2019: IA.4 non-road mobile machinery, IA.4 cii Agriculture Off Road Vehicles & other Machinery and 3D (Crop production and agricultural soils) NFR categories are used.

EEA Report No 13/2019

ISSN 1977-8449

EMEP/EEA air pollutant emission inventory guidebook 2019

Technical guidance to prepare national emission inventories

 Detailed activity data of the specific SF application areas related to agricultural activities are from targeted questionnaires for farmers participating in SF applications, in order to produce realistic emissions data.

www.lifegaiasense.eu

Input data: Emissions of agricultural atmospheric pollutants (II)

- A set of environmental indicators targeted the impact on the atmospheric environment and were included to provide quantitative activity data for calculating atmospheric pollutant emissions.
 - 1. Use of chemical and organic fertilisers type (name) and quantity (annual quantity in kg or I per ha) of fertiliser for the specific crop type and the application frequency (e.g. per year or season)
 - 2. Energy use annual consumption of transport fuel in litres, annual energy use in KWh (including energy for irrigation e.g. pumping, drilling), and annual consumption of machine lubricants in litres.
- Tier 1 methodology was applied to calculate emissions of PM10, PM2.5, NO, NMVOC, using the default emission factors (EFs) for NFR Source category 3.D (Crop production and agricultural soils) from Table 3.1 of the EMEP EMEP/EEA emission inventory guidebook 2019. On-site data for quantities of fertiliser (kg of fertiliser N) applied and size of the cultivated area (ha) were derived from farmers' questionnaires and logbooks. The percentage of N of each fertiliser was estimated from the fertiliser commercial name and composition.

Input data: Emissions of agricultural atmospheric pollutants (III)

- Tier 1 methodology was used for emissions calculation of GHGs (CH₄, CO₂, N₂O) and atmospheric pollutants (NH₃, NMVOC, NO_x, PM₁₀ and PM_{2.5}), employing the default EFs for NFR Source category 1.A.4.c.ii-Agriculture from Table 3-1 (Tier 1 emission factors for off-road machinery) of the EMEP EMEP/EEA emission inventory guidebook 2019. On-site activity data on fuel consumption were derived from farmers' questionnaires.
- Tier 1 methodology was used for calculating N_2O emissions from fertiliser application in agricultural soils, according to the default value of 1% of kg⁻¹ fertiliser N applied of IPCC.
- Tier 2 methodology was applied for the calculation of NH3 emissions resulting from soil fertilisation, taking into account the climate zone of the pilot farm, the soil pH and the amount of N applied to the soil as calculated from the information in the farmers' questionnaires and logbooks.

NH₃ EFs based on fertilizer application data

Table I. EFs for N_{H3} emissions from fertilisers applied (in g NH₃ (kg N applied)⁻¹) (Tier 2 approach)

The project LIFEGAIASense is co-funded by the LIFE P

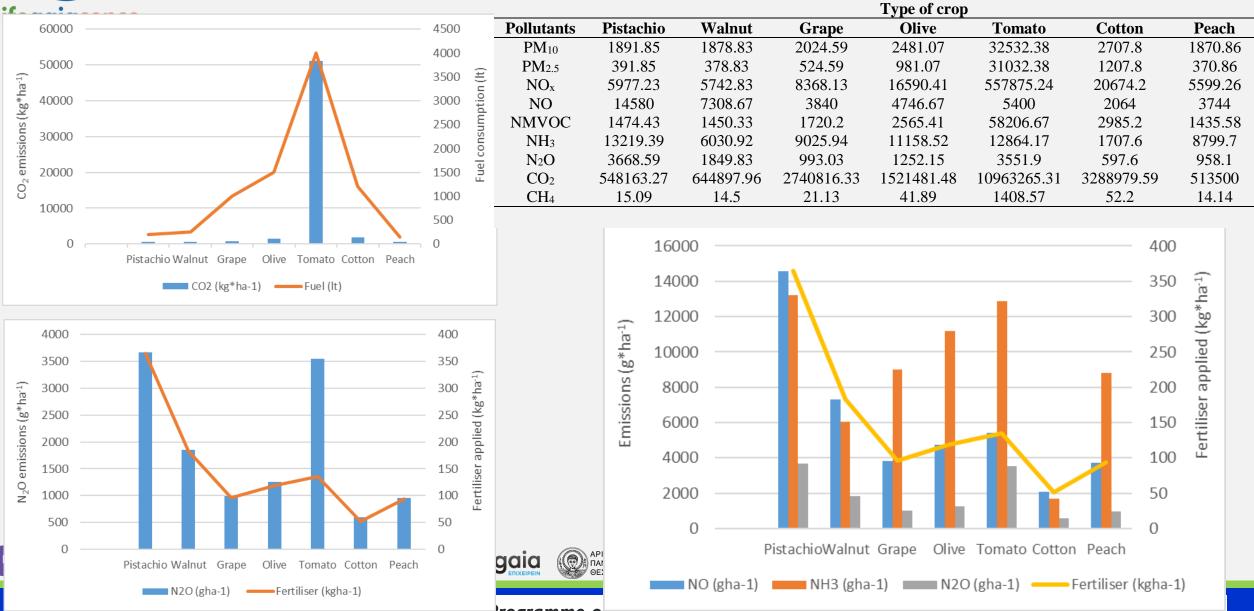
Type of	Field	Climate	Soil pH	Fertiliser	Type of	EF
crop	location	zone			fertiliser	
Pistachio	Vovu,	Temperate ⁽²⁾	High ⁽³⁾	34.5-0-0	AN	33
	Aegina			13-13-13	NPK	
	(Attiki)				mixture	94
Walnut	Elassona (Larissa)	Temperate	High	33.5-0-0	AN	33
Walnut	Elassona	Temperate	High	12-0-2.5 ^a	NK	
	(Larissa)	•	0		mixture	33
				35-0-0 ^b	AN	33
				5-10-20 ^c	NPK	
					mixture	94
Grape	Megalos	Temperate	High	12-11-18 ^d	NPK	
r	Valtos,		8		mixture	94
	Kiato (Korinthia)					
Olive	Stylida	Temperate	High	19-6-15°	NPK	
	(Fthiotida)	Ĩ	8		mixture	94
				$20-5-10^{f}$	NPK	
					mixture	94
Tomato	Kesari,	Temperate	High	15-15-15	NPK	
	Kiato	Ĩ	C		mixture	94
	(Korinthia)			18-44-0	NP	
					mixture	94
				3-33-0 ^g	NP	
					mixture	94
				20-20-20 ^h	NPK	
					mixture	94
Cotton	Melissochori	Temperate	High	33.5-0-0	AN	33
	(Larissa)		-			
Peach	Skydra	Temperate	High	12-12-17	NPK	
	(Pella)	-	0		mixture	94

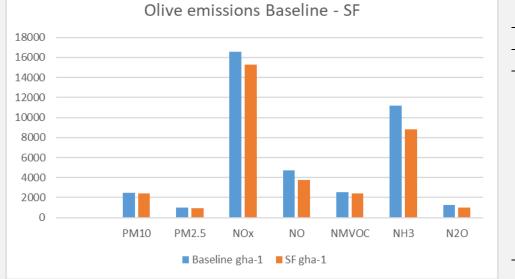
E N Q I H MEPAMBEANOY

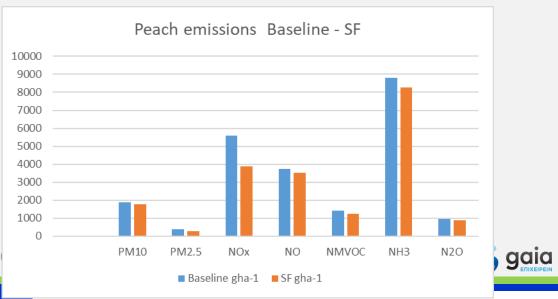
iR000220

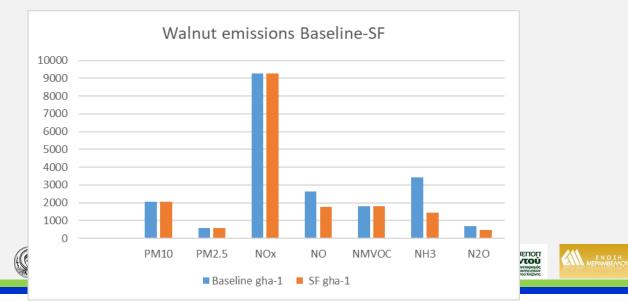
Agricultural emissions calculation

9	€ K Cut Copy → e ✓ Format Painte	Calibri (Body) • B I U •			Wrap Text General	Conditional	I Format as		ad xplanatory	Good Followed Hy	Neutral Hyperlink	Calculation *	Insert Delete For		
	Clipboard	rs Font	6	Alignme		T _k	TODAL.			yles			Cells	Editing	
Char	rt 13 👻 🗄	$\times \checkmark f_x$													
4	A	В	с	D	E	F	G	н	1	J	к	L	М	N	0
_		ions from agri													
2 P	^v istachio (B	Fertiliser ap F	ertiliser (FTC	otal Fertilis	Non-road machinery (¿F	uel (tonı T	otal non-roa	Stand	Harvest-	Area (haT	otal Stand	Total Act Tota	l Categories	Total EFs EMEP PM	Total EMEP
					1012	0.47	225.24			4.7			225.24	4500	-
_	PM10				1913	0,17	325,21			1,7			325,21		2
-	PM2.5				1913	0,17	325,21			1,7			325,21		
-	NOx	40	244.07	0574.0	34457	0,17	5857,69						5857,69		
_	NO	40	214,37	8574,8	25.42	0.47	602.44	0.00		4.7	4.462		8574,8		
	NMVOC	50	244.27	40740 5	3542	0,17	602,14			1,7	1462		2064,14		
	NH3	50	214,37	10718,5	8	0,17	1,36						10719,86		
_	N2O				136	0,17	23,12						23,12		
	02				3160000	0,17	537200						537200		
2															
3															
4	Malassia (E.	Fortilian or F			n an an air a			Chand		Amer (h.a.)					
5 V	vainuts (i k	Fertiliser ap F	ertiliser (kg)		non-road machinery (gF	uei (tonne	2)	Stand	ing crops	Area (ha)				Total EFs (g/ha)	
о 7 Р	PM10				1913	0,42	803,46			1,7			803,46	1560	2
-	PM2.5				1913	0,42	803,46			1,7			803,46		
	NOx				34457	0,42	14471,94						14471,94		
20 N		40	11,9	476		-,							476		
	NMVOC				3542	0,42	1487,64	860		1,7	1462		2949,64		
_	NH3	50	11,9	595	8	0,42	3,36						598,36		
	N2O		,-		136	0,42	57,12						57,12		
	02				3160000	0,42	1327200						1327200		


Select destination and press ENTER or choose Paste


Agricultural emissions from baseline data




Emissions comparison from baseline and SF data

	Type of crop											
Pollutants	Wal	lnut	Ol	ive	Peach							
	Baseline	SF	Baseline	SF	Baseline	SF						
PM_{10}	2074.19	2074.19	2481.07	2410.22	1870.86	1775.21						
PM _{2.5}	574.19	574.19	981.07	910.22	370.86	275.21						
NO _x	9260.32	9260.32	16590.41	15314.22	5599.26	3876.41						
NO	2622.5	1765	4746.67	3758.52	3744	3510						
NMVOC	1811.91	1811.91	2565.41	2434.22	1435.58	1258.48						
NH ₃	3445.03	1458.84	11158.52	8836.07	8799.7	8249.4						
N_2O	692.18	477.8	1252.15	1000.07	958.1	892.8						
CO_2	849250	849250	1521481.48	1404444.44	513500	355500						
CH ₄	23.38	23.38	41.89	38.67	14.14	9.79						

Conclusions

- The atmospheric modelling is one of several components contributing to the comprehensive evaluation of the environmental impact of SF GAIA Sense application.
- In the proposed modelling methodology relies on high-resolution meteorological input data from sensors, high-resolution topography data and realistic activity data for atmospheric emissions calculation at farm level.
- The input data are fed into a two-way coupled mesoscale-microscale atmospheric modelling system, in order to calculate the impact of SF on air pollution at a farm scale.
- Emissions calculation follows a combined Tier I Tier2 approach. The results of emissions calculation indicate the correlation of the studied pollutants to major contributing emissions sources in agriculture.
- Lower fuel consumption and fertilizer application in the SF application has resulted in reduced emissions of related pollutants.

The project LIFEGAIASense is co-funded by the LIFE Programme of the European Union under contract number LIFE17 ENV/GR000220

www.lifegaiasense.eu 🛞 NEUROPUBLIC 6 gaia

Thank you very much for your attention!

