

Harmo20

MODELLED AND MEASURED ABL CHARACTERISTICS FOR THE CITY OF SOFIA

Ekaterina Batchvarova¹, Damyan Barantiev¹, Reneta Dimitrova², Hristina Kirova³, Orlin Gueorguiev³, Maria Kolarova³, Rosen Penchev⁴

¹Climate, Atmosphere and Water Research Institute at Bulgarian Academy of Sciences (CAWRI-BAS), Sofia, Bulgaria

² Faculty of Physics, Department of Meteorology and Geophysics - Sofia University "St. Kliment Ohridski", Bulgaria

³National Institute of Meteorology and Hydrology, Sofia, Bulgaria

⁴BULATSA, Meteorology Department, Sofia, Bulgaria

Tartu, 14-18 June 2021

Motivation

The ABL height in Sofia valley is the main factor for air pollution episodes in Sofia in winter.

Even in a bright sunny day the ABL reaches only half way the height of the mountains.

Goal: Evaluation of model results against sodar measurements in complex terrain urban area; identify best model setup for Sofia

ALONG WITH ABL HEIGHT OTHER METEOROLOGICAL PARAMETERS ARE ALSO IMPORTANT FOR AIR QUALITY AND SURFACE-ATMOSPHERE EXCHANGE IN FORECAST AND CLIMATE MODELS

Turbulence Wind speed

Wind direction

Temperature

Profiles of all parameters

Energy and material exchange with surface

OUTLINE

- Methods (model and observations)
- TKE
- Temperature
- Conclusions

Question: How well WRF simulates the profiles of wind and turbulence?

2 MFAS SCINTEC sodars, one with RASS

WRF v. 3.9 setup

- 99 pressure-based terrain-following vertical levels from the surface to app.
 50 hPa, 23 levels up to 500 m; 40 levels in 1000 m a.g.l.
- The initial and boundary conditions were derived from the 0.25-degree NCEP Final **Operational Model Global Tropospheric** Analyses datasets every 6 hours. This product comes from the Global Data Assimilation System and Data assimilation (fdda model option) was used for the outermost domain D1 for all vertical levels and for D2 above the first 10 model levels only. No data assimilation for D3 and D4.

WRF physics package

- New version of Radiative Transfer Model

 RRTMG parameterization for longwave and shortwave radiation computed every 10 minutes;
- Noah land surface model;
- Grell-Freitas cumulus parameterization for D1 and D2
- Lin, et al. microphysics
- Two PBL schemes with their corresponding surface schemes:
- Bougeault and Lacarrere scheme, BouLac
- Quasi-Normal Scale Elimination scheme, QNSE
- The period 3-4 September 2018 is presented here for illustration

Measured (MFAS SCINTEC sodars) and modelled TKE

Turbulence Kinetic Energy [m²s⁻²

Statistical indicators for BouLac ABL scheme, 3 - 4 Sep 2018

Corr. coefficient, standard deviation error (stde), standard deviation (SD), bias, mean value of model (mod) and observation (obs)

		count	r	stde	SD mod	SD obs	bias	mean mod	mean obs
Sofia Sim. 1	WD	3251	0.850	47.4	66.6	77.0	-7.4	358.9	6.3
	U	3251	0.735	2.3	2.3	3.4	0.4	-0.1	-0.5
	V	3251	0.662	2.0	1.6	2.7	-0.7	-0.8	-0.1
	ТКЕ	2869	0.589	0.7	0.9	0.5	1.0	1.7	0.7
Vakarel Sim. 1	WD	9291	0.108	100.2	76.9	74.2	102.8	130.2	27.4
	U	9291	0.744	2.1	1.9	3.1	-0.1	-0.4	-0.3
	V	9291	0.583	2.9	2.7	3.5	0.3	0.1	-0.2
	ТКЕ	6361	0.744	0.7	1.0	0.5	0.1	0.7	0.6
	т	6975	0.785	1.7	2.3	2.7	0.1	18.9	18.8

Statistical indicators QNSE ABL scheme, 03 - 04 Sep 2018

Corr. coefficient, standard deviation error (stde), standard deviation (SD), bias, mean value of model (mod) and observation (obs)

		count	r	stde	SD mod	SD obs	bias	mean mod	mean obs
Sofia	WD	3251	0.710	65.8	59.2	77.0	24.5	30.8	6.3
	U	3251	0.575	2.8	2.4	3.4	-0.6	-1.1	-0.5
	V	3251	0.479	2.4	1.9	2.7	-0.9	-1.0	-0.1
	TKE	2869	0.307	0.5	0.3	0.5	0.0	0.7	0.7
Vakarel	WD	9291	0.469	80.6	72.1	74.2	67.7	95.1	27.4
	U	9291	0.601	2.5	2.1	3.1	-0.5	-0.9	-0.3
	V	9291	0.580	3.0	3.0	3.5	0.1	-0.1	-0.2
	TKE	6361	0.596	0.4	0.3	0.5	-0.3	0.2	0.6
	Т	6975	0.761	1.8	2.2	2.7	0.0	18.7	18.8

TKE vs radiosonde profiles?

3500 3000 2500

2000 1500 1000

600

Sep 3, 2018

Increase of wind speed in the layer 200-400 a.s.l. on both days around 12 UTC

Sep 4, 2018

Spatial (top and left blue axes and blue line with colored triangles) Temporal (down and right red axes and line with colored dots) values of r for TKE (sodar vs WRF/BouLac)

Sofia

Vakarel

The profile of r is in the range 0.5-0.7 in Sofia and in the range 0.7-0.9 at Vakarel The correlation between model and obs. for TKE is better at noon than during transition periods

Temperature

Both PBL schemes give good results for temperature profiles The values in the vertical profile of r is between 0.7-0.9 Model is better correlated to measurements

around midday than during transition hours

Conclusions

WRF with BouLac ABL scheme simulates better TKE than WRF with QNSE ABL scheme and the results for the rural site are better than for the urban site

Both PBL schemes give similar good results for temperature profiles

Compared to observations the model performed better at the rural site

- The profile of r is in the range 0.5-0.7 in Sofia and in the range 0.7-0.9 at Vakarel
- The correlation between model and obs. for TKE is better at noon than during transition periods
- The values in the vertical profile of r is between 0.7-0.9
- Model is better correlated to measurements around midday than during transition hours

ACKNOWLEDGEMENTS

The contribution of authors E. Batchvarova and R. Dimitrova have been carried out in the framework of the National Science Program "Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters", approved by the Resolution of the Council of Ministers № 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreement № Д01-322/18.12.2019).

The study is supported by the National Science Fund of Bulgaria, Contract KP-06-N34/1 "Natural and anthropogenic factors of climate change – analyses of global and local periodical components and longterm forecasts".

Harmo20

Tartu, 14-18 June 2021