

20th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 14-18 June 2021, Tartu, Estonia

PRELIMINARY STUDY ON RELATIVE RISK OF SARS-COV 2 TRANSMISSION IN TERRACES

E. Rivas, J.L. Santiago, F. Martín, A. Martilli

Environmental Department - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avda. Complutense 40, 28040 Madrid, Spain

esther.rivas@ciemat.es

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Introduction

Bioaerosols play an essential role in the transmission of respiratory diseases

Introduction

Time spent in a restaurant by age in EU

- Degree of occupancy
- Venting •
- Crowding levels
- Face covering
- Occupation time •

RISK OF SARS-CoV-2 TRANSMISSION IN DIFFERENT SETTINGS

Type and level of group activity		Low occupancy		High occupancy				
	Outdoors and well ventilated	Indoors and well ventilated	Poorly ventilated	Outdoors and well ventilated	Indoors and well ventilated	Poorly ventilated		
Wearing face cove	rings, contact for sh	ort time						
Silent	•							
Speaking								
Shouting, singing								
Wearing face cove	rings, contact for pr	olonge						
Silent								
Speaking		*		*				
Shouting, singing								
No face coverings	, contact for short ti	me						
Silent								
Speaking								
Shouting, singing								
No face coverings	, contact for prolong	ed time						
Silent								
Coopling						X		
Speaking								

*Eurostad (2004) **Twitter Pablo Fuente (2020) ***Jones at al., 2020

Introduction

CFD SIMULATIONS OF REAL INDOOR/SEMI-INDOOR ENVIROMENTS

**http://coolvent.mit.edu/intro-to-natural-ventilation/basics-of-natural-ventilation

The objective of this work is to analyze the impact of natural ventilation on the relative risk of SARS-COV 2 transmission, using indoor CO_2 concentrations as a proxy, in a set of virtual indoor/semi-indoor scenarios representing different terrace configurations as function of the outdoor meteorological conditions using a Computational Fluid Dynamic (CFD) methodology.

Methodology CFD Model → Geometry

*Ordenanza de Terrazas y Quioscos de Hostelería y Restauración. Boletín Oficial del Ayuntamiento de Madrid, núm. 6977 de 6 de agosto de 2013. Ayuntamiento de Madrid.

**https://www.3dcadbrowser.com/

***https://grabcad.com

****Franke et al., 2000

Methodology CFD Model → Mesh

CFD tool: STAR-CCM+9.04.011®

*Franke et al., 2007

Methodology CFD Model → Physics

– CFD Model –

- **Unsteady Simulations**
- □ Segregated Flow and Energy
- URANS Model:
 - Realizable K-ε Two-Layer model
- \Box AIR \rightarrow Ideal Gas
- □ Exhaled $CO_2 \rightarrow P_i$ Passive Scalars (5 % Vol.)

– Boundary Conditions –

Free Stream:

$$u(z) = \frac{u_*}{\kappa} ln\left(\frac{z+z_0}{z_0}\right)$$

$$k = \frac{u_*^2}{\sqrt{C_{\mu}}}$$

$$\varepsilon = \frac{u_*^3}{\kappa} (z+z_0)$$

$$T(z) = Neutral$$

$$u_{10} = 1.6 m \cdot s^{-1}$$

$$T = 7 \circ C$$

 $\Box \text{ Ground } \rightarrow \text{Roughness}$

Methodology Virtual Scenarios

Scenario 3

Scenario 4

Wind direction effect on the indoor volume average of ΔC_{CO_2}

Time evolution of indoor volume average of ΔC_{CO_2} for different values of Air Change per Hour (ACH)

Wind direction effect on the ΔC_{CO_2} high resolution map at 1.2 m height

Under certain meteorological conditions, the non-partners influence could be greater than the partners

Red color indicates values greater or equal than upper values of respective scales. Upper values correspond with the indoor surface average of ΔC_{CO_2} at 1.2 m height of each case during the steady state.

Wind direction effect on the ΔC_{CO_2} high resolution map at 1.2 m height

West wind direction

Ventilation is important, but not only

Red color indicates values greater or equal than upper values of respective scales. Upper values correspond with the indoor surface average of ΔC_{CO_2} at 1.2 m height of each case during the steady state.

Scenario 3

Wind direction effect on the volume average of ΔC_{CO_2} incoming to P_i from the others

Volume average of ΔC_{CO_2} incoming to P_i from the others during the steady state

Indoor flow patterns between infectors and susceptibles determine the individual incoming concentrations

Wind direction effect on the volume average of ΔC_{CO_2} incoming to P_i from the others

Volume average of ΔC_{CO_2} incoming to P_i from the others during the steady state

In poorly ventilated scenarios, measures based on the social distance between people have a negligible impact to reducing the cross-infection risk

Wind direction effect on the ΔC_{CO_2} high resolution map at 1.2 m height

 ΔC_{CO_2} high resolution map at 1.2 m height and volume average of ΔC_{CO_2} incoming to each person from the others in 1 hour

In Scenario 5:

- in 1 hour, the average incoming concentration is between 7 and 11 times higher than in Scenario 4
- the assumption of a completely mixed flow inside the terrace would be appropriate

Conclusions

- In outdoor terraces, short-range transmission prevails. But under certain meteorological conditions, the non-partners influence could be greater than the partners
- □ In semi-indoor terraces:
 - In general, the higher the ventilation, the lower the average risk of SARS-COV 2 transmission. For example, in Scenario 4 (a poorly ventilated scenario), it is between 15 and 25 times higher than in Scenario 0 (outdoor scenario)
 - Sut, the individual risks of SARS-COV 2 transmission depend on the flow patterns between infectors and susceptibles
- □ In indoor terraces:
 - Short-range transmission is practically equal to long-range transmission
 - Box models are adequate for individual risk assessments

These CFD results can be useful:

- To better understanding the transport phenomena of bio-aerosols
- To improve the safety in terraces by means of natural ventilation
- To advise on the design of indoor/semi-indoor environments

Additional Slides

Mesh test

Meshing characteristics

Mesh	Coarse	Medium	Fine	
Total number of	310301	1286223	6399519	
$\Delta V(m)$			1	0.5
ΔS (m)	Terrace enclosures and tables/chairs	1	0.5	0.25
	People	0.2	0.1	0.05
Pafinamant (m)	Terrace enclosures and tables/chairs	0.2	0.1	0.05
Kermennenn (III)	People	0.04	0.02	0.01
Prism layer thick	0.2	0.1	0.05	

Mesh test

Indoor profiles for BCD10D20W1CW2CTCWC scenario and West wind direction during the steady state

Statistical parameters comparing Mesh_fine results with Mesh_medium and Mesh_coarse results

	Mesh med		<u>medium</u>			<u>Mesh_coarse</u>		
	R	NMSE	RMSE	FB	R	NMSE	RMSE	FB
ΔC_{CO_2}	0.998	0.031	1.371	-0.154	0.997	0.216	4.082	-0.403
Т	0.999	0.000	0.041	0.000	0.995	0.000	0.101	0.000
u	0.998	0.000	0.005	-0.007	0.994	0.014	0.032	-0.113
κ	0.999	0.001	0.001	0.023	0.984	0.019	0.003	-0.099

Low differences

Wind direction effect on the volume average of ΔC_{CO_2} incoming to P_i from the others

Streamlines from P1's mouth to the outlet during the steady state

Single-Sided Ventilation

Scenario 4

Volume average of ΔC_{CO_2} incoming to P_i from the others during the steady state

In poorly ventilated scenarios, measures based on the social distance between people have a negligible impact to reducing the cross-infection risk