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Tominaga and Stathopoulos (2013)
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Scientific challenges for microscale flow 
dynamics and plume dispersion

Microscale
- Evolution in a complex geometry (urban canopy)
- Highly dependent to near-source behaviour

Meso to microscale
- Multiscale problem (large-scale wind forcing, 

turbulence, boundary layers)

Need for a stochastic approach…
Uncertainties are not accounted for by CFD models
- Mean wind and fluctuations
- Emission source location, type of pollutant, etc.
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CONTEXT
Microscale air pollutant atmospheric dispersion



Large-eddy-simulations (LES)

- Compressible Navier-Stokes equations on 
unstructured meshes (artificial compressibility approach for 

low-Mach flows)

- Proven on many application cases (ex: aeronautical

industrial applications) and evaluated for environmental flows
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CONTEXT
High fidelity modelling CFD tools

Objective
Build a fast and accurate
predictive tool from LES 
information

- Can well represent complex flow features
in canopies/behind obstacles

- Explicitly represent most of the eddies

- Very costly (60 000 hCPU for MUST1 trial)
- Ensemble/uncertainties

Artist's view of the MUST case

1Mock Urban Setting Case (MUST)



Scientific issue

 Definition of the test case 

 Metamodelling approach

 Results
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What is the most suitable machine learning
metamodel for the LES microscale?

Outline
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Example of a tracer concentration field K for a source 
centered at (-0.5,0.5) and an inlet wind of 5.5 m s-1

TEST CASE
Large-eddy simulation dataset

2-D flow around a surface-mounted obstacle

• Quantity of Interest K: time-averaged tracer concentration field

• Passive tracer

• Parametric uncertainties:

- Inlet wind intensity: 𝑈𝑖𝑛𝑙𝑒𝑡 ∈ 1,10 𝑚 𝑠−1

- Emission source position: 𝑥𝑠𝑟𝑐 , 𝑦𝑠𝑟𝑐 ∈ −3.5, −0.2 𝐻 × 0.2,2 𝐻

LES data set
• Densely sampled uncertain 3-D space
• 700 AVBP simulations
• Mesh resolution: ∆𝑥 = ∆𝑧 = 0.04 𝑐𝑚 resolution, 

leading to Nnodes = 240,000 mesh nodes

Optimization of computational cost
• Simulation time depending on the inlet wind intensity
• Average calculation cost: 400hCPU/run

3-D parameter space
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TEST CASE
Quantity of interest

Multiple outputs for LES
- Wind flow: horizontal and vertical velocities
- Plume dispersion: averages, fluctuations
- Cross statistics between flow and tracer dispersion

Time-averaged tracer concentration statistics
- An easy way to start
- Search for metamodels that are able to reproduce the most

important flow features

Uinlet = 5.6 ms-1

A few examples of the LES dataset (mean concentration fields)

Uinlet = 8.6 ms-1

Uinlet = 4.7 ms-1Uinlet = 6.6 ms-1
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METAMODELLING METHOD
Output dimension reduction

Scientific issue: High dimension output

- Account for spatial correlations
- Reduce space dimension  from Nnodes = 240,000 to NPOD = 200
- Total explained variance 200 axes > 99.9 %.

1st axis

3rd axis

10th axis

First POD axes

Ensemble statistics over the 700 LES dataset
Finer scale
structures

Mean

Variance
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700 LES dataset split
- 70% training data (490 LES) used for 

fitting the metamodel hyperparameters
- 30% validation data (210 LES) used for 

performance evaluation

METAMODELLING METHOD
Metamodelling fomulation

3-D parameter space

• 𝑄2 = 1 −
σ𝑖=1
210(𝑦𝑖−ത𝑦)2

σ𝑖=1
210(𝑦𝑖− ො𝑦𝑖)
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• MAE = σ𝐼=1
210 |𝑦𝑖 − ො𝑦𝑖|

- 𝑦𝑖, LES outputs
- ത𝑦, LES ensemble mean
- ො𝑦𝑖, Metamodel predictions

Best 
performance

𝑄2 = 1

−∞

𝑄2 = 0
Mean prediction

performance

Several performance criteria
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Gaussian processes

Variable selection

Kernel type

Kernel’s hyperparameters

Multiple polynomial 
regression

Variable selection

Regularization type

Gradient boosting

Boosting 
parameters

Tree parameters

Variable selection

Loss function
optimization

METAMODELLING METHOD
List of metamodels

Random Forest

Variable selection

Trees parameters

Loss function
optimization

Looking for the most appropriate metamodels
for the LES microscale Compound model

Models
hyperparameters

Model selection

Model selection
- Every POD axis leads to a 

selective process
- One metamodel is kept per axis
- Selection relies on best Q2

performance
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𝑃𝑚𝑎𝑥 3 5 7

Nb. Variables 20 56 120

Q2 of MPR 76.6 % 82.7 % 80.8 %

Q2 of Ridge || ∙ ||2 ≤ 76.6% ≤ 82.7 % 82.1 %

Q2 of LASSO || ∙ ||1 ≤ 76.6 % ≤ 82.7 % 79.5 %

Q2 of Matching Pursuit || ∙ ||0 ≤ 76.6 % ≤ 82.7 % 83.0 %

RESULTS
Multiple polynomial regression

Variable selection using the 3-D uncertain
parameter polynomial combinations

Multiple polynomial 
regression

Variable selection

Regularization type

Q2 response surface for the MPR without penalty and 𝑃𝑚𝑎𝑥 = 5

ො𝑦 = 

𝑖+𝑗+𝑘 ≤𝑃𝑚𝑎𝑥

𝜆𝑖,𝑗,𝑘 𝑈𝑖𝑛𝑙𝑒𝑡
𝑖 𝑥𝑠𝑟𝑐

𝑗
𝑦𝑠𝑟𝑐
𝑘

MPR expression
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Prediction

RESULTS
MPR prediction fields

Prediction procedure
1. The metamodel predicts the 200 POD coefficients
2. Predicted coefficients are projected in the spatial domain

using inverse POD operation

Observations
Upstream
- Coarse structure in the wake of the emission source (wider

range, under-predicted peak intensity)
- Distorted over-predicted areas close to the ground

Downstream
- More steady concentration lines than LES
- Small prediction errors slightly offset the isolines

Mean concentration fields for a validation simulation 
with Uinlet = 5.6 ms-1

LES



12Bastien Nony, HARMO20

RESULTS
Compound model selection

Q2 performances on the first 100 POD axes of 4 families of metamodels

Q2 performance evaluation of metamodels
- MPR performs well on the 5 first POD axes
- Gradient Boosting performances decrease linearly from axis 20
- Random Forest performs poorly on first axes but the decay is slower than gradient boosting
- Gaussian processes maintain a good level of performance on the first 100 axes

Compound model composition
- 4 MPR
- 6 Gradient Boosting
- 15 Random Forest
- 172 Gaussian Processes

In this case the compound model is essentially
a combination of Gaussian process metamodels
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RESULTS
Compound prediction fields

CompoundGradient Boosting

Random Forest LES

Mean concentration fields for a validation simulation with Uinlet = 5.6 m s-1

Compound
- Similar results to Gaussian processes
- Noisy prediction near the source
- Good prediction of the plume structure 

and peak concentrations

Random Forest
- Smooth prediction
- shifted predictions near the source
- Underestimation of peak concentrations

Gradient Boosting
- Noisy prediction near the source
- Underestimation of peak concentrations



Results
Robustness to the lack of training data
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Training data is reduced to 100 LES
POD basis is reduced to 100 axes
- High POD modes can’t be considered due to lack of data 
- Very noisy predictions near the emission source
- Strong errors in predicting peak concentrations

Q2 performances on the first 100 POD axes of 4 families
of metamodels

LES

Compound

MPR

Mean concentration fields for a validation simulation 
with Uinlet = 5.6 ms-1



Perspectives
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Towards a real-test case: Mock Urban Test-Case/MUST

High cost of simulation: 60,000 hCPU

Issue
- 2-D test case study showed a minimum ensemble of 100 simulations was necessary for good convergence of performance statistics
- Need for reducing simulation cost

Idea: new problem decomposition
- use LES to metamodel atmospheric flows without tracer
- Simulate plume flow using cheaper CFD models (e.g. RANS)


