ZCERFACS

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

COMPOUND PARAMETRIC METAMODELLING OF LARGE-EDDY SIMULATIONS FOR MICROSCALE ATMOSPHERIC DISPERSION

Bastien Nony¹

Mélanie C. Rochoux¹, Didier Lucor², Thomas Jaravel³ ¹CECI, Université de Toulouse, CNRS, ³LISN, CNRS Université Paris-Saclay, Orsay, France

> 20th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 14-18 June 2021, Tartu, Estonia

CONTEXT

Microscale air pollutant atmospheric dispersion

Scientific challenges for microscale flow dynamics and plume dispersion

Microscale

- Evolution in a complex geometry (urban canopy)
- Highly dependent to near-source behaviour

Meso to microscale

 Multiscale problem (*large-scale wind forcing*, turbulence, boundary layers)

Need for a stochastic approach...

Uncertainties are not accounted for by CFD models

- Mean wind and fluctuations
- Emission source location, type of pollutant, etc.

Tominaga and Stathopoulos (2013)

CNIS

CONTEXT High fidelity modelling CFD tools

Large-eddy-simulations (LES)

- Can well represent complex flow features in canopies/behind obstacles
- Explicitly represent most of the eddies
- Very costly (60 000 hCPU for MUST¹ trial)
 - Ensemble/uncertainties

In

Parametric

uncertainties

Objective

Build a fast and accurate predictive tool from LES information

Limited LES data LES training information

High-dimensional
output (ex: 80M cells
for MUST trial)

-

AVBP

 Proven on many application cases (ex: aeronautical industrial applications) and evaluated for environmental flows

Artist's view of the MUST case

Machine

Learning

CNrs

Bastien Nony

Scientific issue

What is the most suitable machine learning metamodel for the LES microscale?

Outline

- Definition of the test case
- Metamodelling approach
- Results

TEST CASE Large-eddy simulation dataset

2-D flow around a surface-mounted obstacle

- Quantity of Interest K: time-averaged tracer concentration field
- Passive tracer
- Parametric uncertainties:
 - Inlet wind intensity: $U_{inlet} \in [1,10]m \, s^{-1}$
 - Emission source position: $(x_{src}, y_{src}) \in [-3.5, -0.2]H \times [0.2, 2]H$

Example of a tracer concentration field K for a source centered at (-0.5,0.5) and an inlet wind of 5.5 m s⁻¹

3-D parameter space

LES data set

- Densely sampled uncertain 3-D space
- 700 AVBP simulations
- Mesh resolution: $\Delta x = \Delta z = 0.04 \ cm$ resolution, leading to $N_{nodes} = 240,000$ mesh nodes

Optimization of computational cost

- Simulation time depending on the inlet wind intensity
- Average calculation cost: 400hCPU/run

TEST CASE Quantity of interest

Multiple outputs for LES

- Wind flow: horizontal and vertical velocities
- Plume dispersion: averages, fluctuations
- Cross statistics between flow and tracer dispersion

Time-averaged tracer concentration statistics

- An easy way to start
- Search for metamodels that are able to reproduce the most important flow features

A few examples of the LES dataset (mean concentration fields)

METAMODELLING METHOD Output dimension reduction

Scientific issue: High dimension output

- Account for spatial correlations
- Reduce space dimension from $N_{nodes} = 240,000$ to $N_{POD} = 200$
- Total explained variance 200 axes > 99.9 %.

LISN LABORATOIRE INTERDISCIPLINAIRE DES SCIENCES DU NUMÉRIQUE

First POD axes

édérale

METAMODELLING METHOD Metamodelling fomulation

Bastien Nony, HARMO20

METAMODELLING METHOD List of metamodels

Bastien Nony, HARMO20

LISNI LABORATOIRE INTERDISCIPLINAIRE CNIS

RESULTS Multiple polynomial regression

Multiple polynomial	P _{max}	3	5	7
regression	Nb. Variables	20	56	120
	Q ² of MPR	76.6 %	82.7 %	80.8 %
Variable selection	Q^2 of Ridge $ \cdot _2$	≤ 76.6%	≤ 82.7 %	82.1 %
Regularization type	Q^2 of LASSO $ \cdot _1$	≤ 76.6 %	≤ 82.7 %	79.5 %
	Q^2 of Matching Pursuit $ \cdot _0$	≤ 76.6 %	≤ 82.7 %	83.0 %

MPR expression

Variable selection using the 3-D uncertain parameter polynomial combinations

 Q^2 response surface for the MPR without penalty and $P_{max} = 5$

CNIS

LISN LABORATOIRE INTERDISCIPLINAIRE DES SCIENCES DU NUMÉRIQUE

CERFACS

RESULTS MPR prediction fields

Prediction procedure

- 1. The metamodel predicts the 200 POD coefficients
- 2. Predicted coefficients are projected in the spatial domain using inverse POD operation

Observations

Upstream

- Coarse structure in the wake of the emission source (wider range, under-predicted peak intensity)
- Distorted over-predicted areas close to the ground

Downstream

- More steady concentration lines than LES
- Small prediction errors slightly offset the isolines

Mean concentration fields for a validation simulation with $U_{inlet} = 5.6 \text{ ms}^{-1}$

RESULTS Compound model selection

Q² performance evaluation of metamodels

- MPR performs well on the 5 first POD axes
- Gradient Boosting performances decrease linearly from axis 20
- Random Forest performs poorly on first axes but the decay is slower than gradient boosting
- Gaussian processes maintain a good level of performance on the first 100 axes

差 CERFACS

 Q^2 performances on the first 100 POD axes of 4 families of metamodels

Compound model composition

- 4 MPR
- 6 Gradient Boosting
- 15 Random Forest
- 172 Gaussian Processes

In this case the compound model is essentially a combination of Gaussian process metamodels

Random Forest

Gradient Boosting

RESULTS

Compound prediction fields

Gradient Boosting

- Noisy prediction near the source
- Underestimation of peak concentrations

Random Forest

- Smooth prediction
- shifted predictions near the source
- Underestimation of peak concentrations

Compound

- Similar results to Gaussian processes
- Noisy prediction near the source
- Good prediction of the plume structure and peak concentrations

Mean concentration fields for a validation simulation with $U_{inlet} = 5.6 \text{ m s}^{-1}$

Results

Robustness to the lack of training data

Training data is reduced to 100 LES

POD basis is reduced to 100 axes

- High POD modes can't be considered due to lack of data
- Very noisy predictions near the emission source
- Strong errors in predicting peak concentrations

Q² performances on the first 100 POD axes of 4 families of metamodels

CNIS

édérale

Perspectives

Towards a real-test case: Mock Urban Test-Case/MUST

High cost of simulation: 60,000 hCPU

Issue

- 2-D test case study showed a minimum ensemble of 100 simulations was necessary for good convergence of performance statistics

- Need for reducing simulation cost

Idea: new problem decomposition

- use LES to metamodel atmospheric flows without tracer
- Simulate plume flow using cheaper CFD models (e.g. RANS)

CNrs

