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Abstract: The air monitoring network design is a critical issue because the monitoring stations should be allocated 

properly so that they adequately represent the concentrations in the domain of interest. Previous studies have 

developed methods based on observations obtained from existing networks with a considerable number of stations. 

These methods, however, are difficult to apply to a sparse network or a network under development. In this paper, a 

unique method is presented using metaheuristics integrated with a chemical transport model. The WRF/CMAQ 

simulated concentrations are provided to metaheuristics including genetic algorithm (GA) and simulated annealing 

(SA). In addition, the hybrid algorithm that combines the GA and SA is developed to make best use of the two 

algorithms. The performances of these algorithms are compared to each other by the application to the Kinki region 

in Japan and the best combination with WRF/CMAQ simulation is examined. The HGS best performs among others 

in terms of minimum, mean and standard deviation of the quality measure. The weighing factor based on 

concentrations is successfully implemented so that more stations are placed in higher concentration areas. These 

results demonstrate the effectiveness of the proposed method for the air monitoring network optimization. 
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INTRODUCTION 

Air monitoring networks have been developed in various areas in the world for the environmental, 

epidemiological, policy evaluation and/or emission surveillance purposes by national or local 

governments. These networks should be allocated properly so that they adequately represent the 

concentrations in the domain of interest to accomplish the purposes. This issue is often referred to as a 

network design problem and has been widely discussed. The network design problem generally consists 

of design criterion, concentration estimation method and an algorithm for the selection of a subset from 

potential locations (Wu et al., 2011). A criterion is often defined with geostatistical estimation method 

which is called kriging, where the theoretical extrapolation error (kriging variance) is minimized (e.g., 

Wu et al., 2011). Once the criterion is defined, the network design problem is a combinatorial 

optimization problem. When a network is small enough, complete enumeration of all combinations could 

be possible. For a large network, however, this will run into a combinatorial explosion. To deal with this 

difficulty, metaheuristics have been applied to the optimization of large networks (e.g., Ruis-Cardenas et 

al., 2010; Wu et al., 2011). Previous studies including above mentioned ones apply metaheuristics to 

observations obtained from existing monitoring networks with a considerable number of stations. These 

methods assume that networks represent the spatial distribution sufficiently, thus are often applied to 

relatively dense networks where the efficiency of the network i.e., reduction of stations is focused. 

Therefore, these methods are difficult to apply to a sparse network or a network under development that 

insufficiently represents the spatial distribution of the pollutant of interest. Although the optimization of 

such networks is necessary as well, no procedure that can be applied to such networks has been proposed 

so far to our best knowledge. 

 

Chemical transport models simulate physical and chemical processes including emission, advection, 

photochemical reactions and deposition. These models have been extensively used at various ranges of 



spatial and temporal scale, not only to obtain the spatial distribution, but also to establish an effective 

strategy for the control of the concentrations of air pollutants. Thus, simulated concentrations by chemical 

transport models with sufficiently high spatial resolution and long term calculation can be an alternative 

to observations for the network optimization. Given that the search space is huge and continuous when 

using simulated fields, the superior ability both for a global and local search is required for the search 

algorithm. The GA is able to search in a large space, but often not able to find the local optimal solution 

(Ruiz et. al., 2010). On the other hand, the SA algorithm is able to find locally optimal solutions, but is 

often trapped in regions far from the global optimum (Ruiz et. al., 2010). Therefore, for the optimization 

using the simulated concentrations, the hybrid algorithm that combines the GA and SA should be 

considered to make best use for the GA and SA and to make up for the limitation of the two algorithms. 

 

In this paper, a unique method is proposed using metaheuristics integrated with a chemical transport 

model that can be applied to the optimization of a network with limited number of stations or a network 

under development. As many previous studies have optimized air monitoring networks by minimizing 

mean kriging variance, it is also adopted to the algorithms in this paper. In addition to the GA and SA, the 

hybrid GA and SA (HGS) algorithm is developed and applied to the monitoring network of PM2.5 in the 

Kinki region in Japan. The performances of these three algorithms are compared to each other in terms of 

the quality of the solutions in order to reveal the best combination with model simulated values. 

 

CHEMICAL TRANSPORT MODEL 

The Community Multiscale Air Quality model (CMAQ) (Byun and Ching, 1999) version 5.0.1 is driven 

with the Weather Research and Forecasting model (WRF) (Skamarock et al., 2009) version 3.5.1 with the 

same physics options as those used by Shimadera et al. (2014). Emission data and other settings involved 

in the simulations and CMAQ configurations are detailed in Shimadera et al. (2014). 

 

OPTIMIZATION ALGORIGHMS 

The concentrations simulated by WRF/CMAQ are mean concentrations in grid cell. These simulated 

values are treated as point values at the grid cell centroids. The points that are on land areas are the 

candidate points for the optimized network. The network configuration is expressed as a binary data, a 

vector consisting of zeros and ones with the length of the candidate points, where ones represent gauged 

sites and zeroes represent ungauged sites. The position of the binary string corresponds to that of the 

candidate points. Empirical variogram is computed from all the candidate points and theoretical 

variogram is fitted to it. Mean kriging variance, which is the fitness value of the selected combination of 

points, is then calculated with this fitted variogram and the simulated concentrations at the selected points. 

When calculating mean kriging variance, sequentially selected 15 points that on the outer side of the 

study area are included in order not to overestimate the variance at the boundary area. 

 

Genetic algorithm 

The basic scheme of the GA algorithm in this paper is similar to the standard GA which consists of 

population, selection, crossover and mutation. In the crossover, gauged sites in both parents will be 

gauged and ungauged sites in both parents will be ungauged in the offspring. Half of the sites that are 

gauged in one of the parents and not gauged in the other will be randomly conversed. The probability of 

crossover occurrence is set to 0.9. In the mutation, 5% of gauged sites are randomly selected and swapped 

with the same number of randomly selected ungauged sites with a probability of 0.2. The solutions with 

the best 5% fitness remain in the next generation. These operations stop when the total number of 

generations reaches 400, or when the number of generations without any improvement reaches 100. 

 

Simulated annealing 

The SA algorithm is an iterative search algorithm which starts with a randomly selected initial solution. A 

new potential solution is created by exchanging a randomly selected gauged site for a randomly selected 

ungauged site in the pre-defined search window of the selected gauged site. The fitness is then computed 

for the new potential solution and compared to that of the current solution. The new potential solution is 

accepted when the fitness has improved. Even when the fitness has degraded, the new potential solution is 

accepted with a certain probability. The size of the search window is fixed in the first 500 iterations at 7 × 

7 cells of the original grid. Then it is decreased after 500 iterations down to a 5 × 5 window, and a 3 × 3 



from 1 000 iterations and onward. The total number of iterations for each run is set to 10 000. The 

algorithm also stops when the number of iterations with no progress reaches 500. 

 

Hybrid algorithm 

The basic scheme of the HGS is similar to the GA described above. The SA algorithm with 30 iterations 

is applied to the solutions in the population after 50 generations. After 50 generations, the crossover and 

mutation probability is set to 0.3 and 0 respectively. The SA is only applied to the solutions with the best 

15% fitness. The size of the search window is decreased according to the number of generations; 7 × 7 

during the first 25 generations with the SA, then 5 × 5 during the next 25 generations, and finally 3 × 3 

until the end. The total number of iterations is set to 300, but the algorithm also stops when the number of 

generations with no progress reaches 10 after the SA is applied.  

 

 APPLICATION TO PM2.5 MONITORING NETWORK 

 

Study Area and setups 

The proposed method is applied to the PM2.5 

monitoring network in Kinki region in Japan 

(134.2°E – 136.5°E, 33.4°N – 35.8°N) where 

megacities such as Osaka, Kyoto and Kobe are 

located. The air quality standard of PM2.5 in Japan 

was set in the year 2009 and the number of 

monitoring stations started to increase rapidly, for 

instance, from 57 stations in the study area in the 

year 2011 to 116 in the year 2013, but still 

remains much fewer than those of the other air 

pollutants such as NO2 with 216 stations. In 

addition, many of the PM2.5 monitoring stations 

are placed in populated areas, while a few stations 

in less populated or mountain areas.  

 

WRF/CMAQ model is run from April 2010 to 

March 2011 (Japanese fiscal year 2010) with an 

initial spin-up period of 22-31 in March 2011. The horizontal domains consist of three domains: domain 1 

covering a wide area of Northeast Asia, domain 2 covering the main land of Japan, and domain 3 

covering the study area. The horizontal resolution is 4 km and the number of grid is 68 × 72 for domain 3. 

 

The GA, SA and HGS algorithms are applied to three different network sizes; 1) 57 stations, which is 

consistent with the number of stations in the year 2011, 2) 116 stations, consistent with that in the year 

2013, 3) 150 stations. It should be noted that the locations of the existing stations are not considered here 

because the application of the observation-free method is focused. The performance is compared in terms 

of minimum, mean and standard deviation (SD) of mean kriging variance. 

 

Model performance 

The performance of the model is detailed in Shimadera et al. (2014) and summarized as follows. The 

model well simulates the temporal and spatial variation patterns daily concentrations, and approximately 

reproduces the monthly means except for the underestimates in summer, which results in the 

underestimation of the annual means. Given that the underestimation is spatially uniform in general, the 

simulated annual means have sufficient quality to be provided to the network optimization algorithms. 

The spatial distribution of the simulated concentrations of annual mean is given in Figure 1.  

 

Optimization results 

The indicators of the performance calculated from 20 realizations of each algorithm for the three cases are 

provided in Table 1. Regarding the comparison between the performance of the GA and SA, the SA 

shows smaller minimum and mean, while the GA consistently shows smaller SD. However, the HGS 

outperforms the GA and SA with smaller minimum and mean as well as much smaller SD. The best 

 
Figure 1. The spatial distribution of the PM2.5 annual 

mean obtained by WRF/CMAQ simulation for the 

Japanese fiscal year 2010. Unit is μg m-3. 



network design obtained by the HGS for the three network sizes are presented in Figure 2 together with 

the spatial distribution of the concentrations predicted by ordinary kriging with the simulated values at the 

selected sites. The selected sites in the best network designs are placed homogeneously in general for all 

the three algorithms (not shown here for those by the GA and SA). The spatial distributions sufficiently 

capture the feature of the simulated fields for all the cases. Although the difference in the pattern of the 

spatial distribution between the network sizes is not significant, the larger the network size, the better the 

predicted field reproduces the higher and lower concentration areas.  

 

Table 1. The statistical measures of the mean kriging variance (×10-6) obtained from 20 realizations of the GA, SA 

and HGS for each network size n 

  GA    SA    HGS  

n Min. Mean SD  Min. Mean SD  Min. Mean SD 

57 1692 1704 8.6  1650 1662 15.6  1645 1650 2.6 

116 1199 1204 2.9  1159 1171 9.5  1155 1158 1.7 

150 1049 1055 2.8  1017 1027 7.9  1013 1014 1.0 
 

 
Figure 2. The optimized network by the HGS for the network size a) n=57, b) n=116 and c) n=150. The 

concentration fields are generated by ordinary kriging with the simulated values at the selected sites. The crosses 

represent the selected sites. Unit is μg m-3. 

 

Weighing factor 

One might consider the basic strategy where more monitoring stations should be placed in the higher 

concentration areas. To achieve this, a weighing factor can be implemented in the algorithm. Kriging 

variance is multiplied by the factor w(s) ={(c(s) - cmin)/csd}
2
, where c(s) is a concentration at s, cmin and csd 

are the minimum and standard deviation of the simulated concentrations respectively. The network is 

optimized by the HGS incorporated with w(s) for the three network sizes and the results are compared to 

those obtained without the factor. The mean kriging variance as well as R
2
 and root mean squared error 

(RMSE) between the simulated values and the predicted fields by ordinary kriging with the simulated 

values at the selected sites are presented in Table 2. The quality measures for the results obtained without 

the factor are identical to the mean values from 20 realizations by the HGS in the previous section. The 

optimized networks obtained with the weighing factor are given in Figure 3 for the three network sizes. 

 

By the weighing factor, some sites shift from lower concentration areas to higher concentrations areas. As 

a consequence, the distributions predicted by ordinary kriging (Figure 3) show better correspondence with 

the higher concentration areas in the simulated field (Figure 1) than those obtained without the weighing 

factor (Figure 2). The distributions also show smaller areas of lower concentrations where less sites are 

selected. Although the difference in R
2
 is not significant, mean kriging variance and RMSE of the 

network obtained with the weighing factor are larger than those without the factor, which is due to the 

effect of the factor that realizes less homogeneous placement of stations.  

 



Table 2. The comparison of the quality measures from the optimized network with and without the weighing factor 

by the HGS for the three network sizes. MKV represents mean kriging variance (×10-6). Unit of RMSE is μg m-3. 

 With the weighing factor  Without the weighing factor  

n MKV R2 RMSE  MKV R2 RMSE 

57 1796 0.84 0.59  1649 0.84 0.49 

116 1298 0.86 0.53  1158 0.89 0.40 

150 1140 0.89 0.48  1014 0.90 0.38 
 

 
Figure 3. The optimized network by the HGS with the concentration based weighing factor for the network size a) 

n=57, b) n=116 and c) n=150. The concentration fields are generated by ordinary kriging with the simulated values at 

the selected sites. The crosses represent the selected sites. Unit is μg m-3. 

 

CONCLUSION 

In this paper, a unique method integrating metaheuristics with WRF/CMAQ model is presented that can 

be applied to the optimization of an air monitoring network with limited number of stations or a network 

under development. In addition to the metaheuristics such as the GA and SA, the HGS algorithm is 

developed and compared to the two algorithms with the results from the application to the monitoring 

network of PM2.5 in the Kinki region in Japan for three different network sizes. The HGS consistently 

outperforms the rest of the two algorithms over the three cases. This demonstrates that the HGS 

successfully combine the advantages of the GA and SA, and works best with WRF/CMAQ simulated 

values. The concentration based weighing factor is successfully implemented in the HGS resulting in the 

optimized network with more stations in the relatively higher concentration areas. When the basic 

strategy where more stations should be placed in populated areas is considered, the weighing factor based 

on population or population density can be readily implemented into the HGS in a similar way. The 

proposed method that integrates the HGS algorithm with WRF/CMAQ model has broad utility and can 

provide information of vital use on the air monitoring network optimization. 
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