16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 8-11 September 2014, Varna, Bulgaria

NUMERICAL STUDY OF THE ATMOSPHERIC COMPOSITION CLIMATE OF BULGARIA – VALIDATION OF THE COMPUTER SIMULATION RESULTS

Georgi Gadzhev¹, Kostadin Ganev¹, Nikolay Miloshev¹

¹National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract: Some extensive numerical simulations of the atmospheric composition fields in Bulgaria have been recently performed.

The US EPA Model-3 system was chosen as a modelling tool. The system consists of three components: MM5 - the 5th generation PSU/NCAR Meso-meteorological Model used as meteorological pre-processor; CMAQ - the Community Multiscale Air Quality System; SMOKE - the Sparse Matrix Operator Kernel Emissions Modelling System – the emission model. As the NCEP Global Analysis Data with 1 degree resolution was used as meteorological background, the MM5 and CMAQ nesting capabilities were applied for downscaling the simulations to a 3 km resolution over Bulgaria. The TNO emission inventory was used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions. The biogenic emissions of VOC are estimated by the model SMOKE.

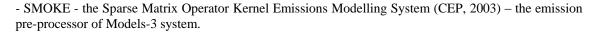
The numerical experiments performed produced a huge volume of information, which was used as a basis for evaluation and clarification of the atmospheric composition climate of Bulgaria. It is natural, in such a case, that the model results should be validated by comparison with measured data. The outcome of these comparisons is demonstrated and commented in the present paper. The overall conclusion is that the agreement of simulated and measured concentration is reasonable enough, so the created computer simulation data set is reliable and can really be used for atmospheric composition climate assessments.

Key words: atmospheric composition, air pollution modelling, US EPA models-3 system, comparison with measured data

INTRODUCTION

Recently extensive studies for long enough simulation periods and good resolution of the atmospheric composition status in Bulgaria have been carried out using up-to-date modelling tools and detailed and reliable input data (Gadzhev et al. 2011, 2012, 2013 a,b,c,d).

The simulations aimed at constructing of ensemble, comprehensive enough as to provide statistically reliable assessment of the atmospheric composition climate of Bulgaria – typical and extreme features of the special/temporal behaviour, annual means and seasonal variations, etc.


The numerical experiments performed produced a huge volume of information, which was used as a basis for evaluation and clarification of the atmospheric composition climate of Bulgaria. It is natural, in such a case, that the model results should be validated by comparison with measured data. The outcome of these comparisons is demonstrated and commented in the present paper.

BRIEF DESCRIPTION OF THE COMPUTER SIMULATIONS

The simulations are based on the US EPA Model-3 system. The system consists of three components:

- MM5 - the 5th generation PSU/NCAR Meso-meteorological Model MM5 (Dudhia, 1993, Grell et al., 1994) used as meteorological pre-processor;

- CMAQ - the Community Multiscale Air Quality System (Byun et al., 1998, Byun and Ching, 1999), being the Chemical Transport Model (CTM) of the system, and

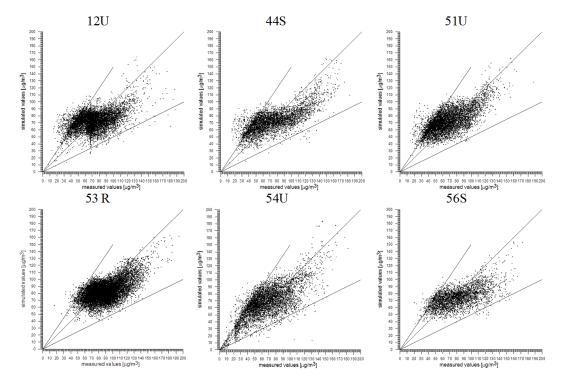
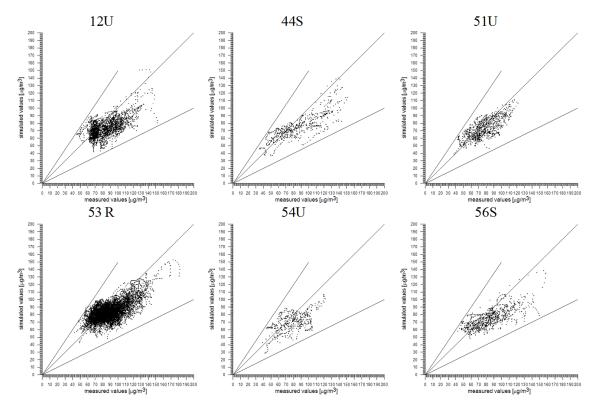


Figure 1. Scatter diagrams of simulated and measured ozone levels for some of the stations of the Bulgarian National Network for Air Quality Control.

The large scale (background) meteorological data used by the study is the NCEP Global Analysis Data with $1^{\circ}\times1^{\circ}$ resolution. The MM5 and CMAQ nesting capabilities are used to downscale the problem to a 3 km horizontal resolution for the innermost domain (Bulgaria).

The TNO high resolution emission inventory (A. Visschedijk et all., 2007) is exploited. A detailed description of the emission modeling is given in Gadzhev et al. (2013a).


The MM5/CMAQ simulations were performed day by day for 8 years - from 2000 to 2007. Thus a quite extensive data base was created, which could be used for different studies and considerations of the main features and origins of the atmospheric pollution in Bulgaria.

COMPARISSON WITH MEASURED DATA, COMMENTS AND DISCUSSION

The computer simulations were validated by comparison with data of the pollution levels, measured by the Bulgarian National Network for Air Quality Control.

Scatter diagrams of simulated and measured ozone levels for some arbitrarily taken stations in Figore 1. It can be seen, that almost all the points are within the FA2 margins, which means that the condition for no more than 50% uncertainty of the hourly ozone values, defined in the respective European directive (European Parliament, 2002) is fulfilled. The simulated results tend to underestimate the high ozone values and to overestimate the low ones.

The running 8-hour average values for simulated and measured ozone concentrations have been also calculated. The respective scatter diagrams are shown in Figure 2. It can be immediately seen that the agreement between the simulated and measured running 8-hour average ozone values is much better in

comparison to the hourly values. The less dispersion around the ideal correspondence line and the better correlation is obvious. The above quoted requirement for less than 50% uncertainty is strictly fulfilled.

Figure 2. Scatter diagrams of running 8-hour average values for simulated and measured ozone levels for some of the stations of the Bulgarian National Network for Air Quality Control.

Some statistical evaluations of the O₃ and NO₂ simulations performance are shown in Tables 1, 2.

station	MO	MP	NMB	NRMSE	FA2	PCC	NMSD
	(µg/m ³)	$(\mu g/m^3)$	(%)	(%)	(%)		(%)
12U	71.45	72.41	1.35	11.27	87.30	0.45	-41.04
13S	72.49	70.25	-2.56	12.71	91.45	0.49	-45.36
41U	72.92	71.67	-1.72	11.71	90.76	0.67	-32.95
43U	69.68	76.69	10.05	15.19	82.77	0.52	-44.87
44S	73.72	72.47	-1.70	12.46	88.26	0.72	-44.54
45S	70.48	71.99	2.14	12.34	88.97	0.67	-36.67
49S	67.43	73.00	8.27	6.92	85.27	0.53	-32.70
50S	60.08	75.18	25.13	12.77	75.90	0.69	-12.63
51U	67.19	72.37	7.71	10.35	86.06	0.68	-31.19
52S	61.34	66.92	9.09	9.85	86.14	0.68	-9.23
53R	88.96	82.64	-7.11	6.42	98.76	0.58	-33.87
54U	66.70	67.72	1.53	8.84	88.15	0.72	-19.60
55U	61.61	72.11	17.05	16.59	80.81	0.55	-27.91
56S	80.34	74.19	-7.65	14.02	94.91	0.62	-46.14

Table 1. Some statistical evaluations of the simulated ensemble with measured data for O_3 : MP, MO – mean simulated and observed concentrations, NMB – normalised mean bios, NRMSE – normalised root mean square error, FA2 - % of cases within FA2 margins, PCC –correlation coefficient, NMSD – normalised mean square deviation

Some criteria of acceptance of the simulated/measured concentrations agreement are defined in Thunis et al. (2013z, 2013b). The comparison of the results in Tables 1, 2 with these criteria (Table 3), shows that for most of the stations the criteria are fulfilled. The NO2 simulations, in particular evaluated by the FA2

criterion, perform worse. This can be explained partially by the great uncertainty in the NO_2 emission inventory – the NO_2 emissions from road transport are given as total for the country and their spatial distribution is determined by surrogates – the road categories and network density.

The other probable reason is that the stations of the Bulgarian National Network for Air Quality Control are mostly located in the cities and near big industrial sources in order to reflect the highest pollution levels. The simulation horizontal spatial resolution (3 km) is probably not good enough to "catch" these NO₂ maxima. The ozone fields, from the other hand, are smoother, with smaller horizontal gradients and maxima not so closely related to the sources.

station	MO	MP	NMB	NRMSE	FA2	PCC	NMSD
	(µg/m ³)	(µg/m ³)	(%)	(%)	(%)		(%)
12U	15.47	7.11	-54.04	7.52	50.84	0.52	-57.49
13S	16.87	8.23	-51.22	5.07	53.82	0.38	-64.49
41U	25.32	11.10	-56.15	9.47	43.67	0.35	-68.54
43U	12.83	5.85	-54.45	9.63	49.29	0.51	-60.45
44S	9.98	5.99	-39.96	8.73	62.17	0.63	-38.77
45S	13.85	6.04	-56.35	9.25	49.21	0.46	-71.51
49S	22.66	9.51	-58.02	15.03	43.58	0.42	-56.48
50S	23.45	10.14	-56.76	9.56	43.20	0.47	-54.84
51U	18.55	7.48	-59.68	9.09	46.62	0.47	-74.09
52S	27.28	16.91	-38.01	7.57	64.52	0.67	-42.91
53R	3.83	2.71	-29.22	10.69	75.52	0.71	-39.38
54U	42.07	21.44	-49.04	10.07	52.10	0.65	-44.92
55U	14.01	5.12	-63.42	7.15	42.76	0.46	-78.92
56S	7.59	4.10	-45.91	7.84	56.96	0.61	-50.69

Table 2. Some statistical evaluations of the simulated ensemble with measured data for NO₂: MP, MO – mean simulated and observed concentrations, NMB – normalised mean bios, NRMSE – normalised root mean square error, FA2 - % of cases within FA2 margins, PCC –correlation coefficient, NMSD – normalised mean square deviation

		O_3	NO_2		
	Rural	Urban / SubUrban	Rural	Urban / SubUrban	
NMB	< 37%	< 41%	< 159%	< 79%	
PCC	> 0.40	> 0.51	> 0.00	> 0.29	
NMSD	< 107%	< 97%	< 200%	< 117%	
FA2	> 50 %	> 75% / 77%	> 50 %	> 49.3% / 58.2%	

CONCLUSIONS

The comparison of the simulated fields with data of the pollution levels, measured by the Bulgarian National Network for Air Quality Control shows an agreement, which is not brilliant. The acceptance criteria, defined in Thunis et al. (2013z, 2013b) are, however, fulfilled to a great extend. This means that the agreement is reasonable enough, so that the simulated ensemble can be treated as representative reliable for the atmospheric composition climate of Bulgaria. Thus the evaluations made in Gadzhev et al. (2011, 2012, 2013 a,b,c,d) about typical and extreme features of the special/temporal behaviour, annual means and seasonal variations of different pollution characteristics – concentrations, contribution of different source categories, contribution of different processes, etc. should be considered as valid enough to provide scientifically robust assessments of the atmospheric composition and its origin.

The comparison results are not thoroughly satisfying. As mentioned above, one of the certain reasons for the simulation errors is the uncertainty in the emission inventories. Solving this problem requires, however, not only research, but administrative efforts as well.

ACKNOWLEDGMENTS

The present work is supported by the Bulgarian National Science Fund (grant ДЦВΠ-02/1/29.12.2009) and the EC-FP7 grant 261323 (project EGI-InSPIRE).

Deep gratitude is due to US EPA, US NCEP and EMEP for providing free-of-charge data and software. Special thanks to the Netherlands Organization for Applied Scientific research (TNO) for providing us with the high-resolution European anthropogenic emission inventory.

REFERENCES

- Byun, D. ,J. Young, G. Gipson, J. Godowitch, F.S. Binkowski, S. Roselle, B. Benjey, J. Pleim, J. Ching, J. Novak, C. Coats, T. Odman, A. Hanna, K. Alapaty, R. Mathur, J. McHenry, U. Shankar, S. Fine, A. Xiu, C. Jang, 1998: Description of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, 10th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, 264-268.
- Byun, D., J. Ching, 1999: Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. EPA Report 600/R-99/030, Washington DC. http://www.epa.gov/asmdnerl/models3/doc/science/science.html.
- CEP Sparse Matrix Operator Kernel Emission (SMOKE) Modeling System, University of Carolina, Carolina Environmental Programs, Research Triangle Park, North Carolina 2003.
- Dudhia, J., 1993: A non-hydrostatic version of the Penn State/NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493-1513.
- European Parliament, 2002: DIRECTIVE 2002/3/EC of 12 February 2002 relating to ozone in ambient air, Official Journal of the European Communities (9.3.2002), L67, pp. 14-30.
- Gadzhev, G.,G. Jordanov, K. Ganev, M. Prodanova, D. Syrakov, N. Miloshev, 2011: Atmospheric Composition Studies for the Balkan Region, Lecture Notes in Computer Sciences, Dimov, I. S. Dimova, and N. Kolkovska (Eds.): LNCS 6046, c. Springer-Verlag Berlin Heidelberg, 150-157
- Gadzhev, G., K. Ganev, D. Syrakov, N. Miloshev, M. Prodanova, 2012: Contribution of Biogenic Emissions to the Atmospheric Composition of the Balkan Region and Bulgaria, Int. J. Environment and Pollution, Vol. 50, Nos. 1/2/3/4, 2012, 130-139,
- Gadzhev, G., K. Ganev, N. Miloshev, D. Syrakov, M. Prodanova, 2013a: Numerical Study of the Atmospheric Composition in Bulgaria, Computers and Mathematics with Applications 65, 402-422.
- Gadzhev, G., K. Ganev, N. Miloshev, D. Syrakov, M. Prodanova, 2013b: Some Basic Facts About the Atmospheric Composition in Bulgaria – Grid Computing Simulations, 9th International Conference, LSSC 2013, Sozopol, Bulgaria, 484-490.
- Gadzhev, G.,K. Ganev, N. Miloshev, D. Syrakov, M. Prodanova, 2013c: Analysis of the Processes which Form the Air Pollution Pattern Over Bulgaria, 9th International Conference, LSSC 2013, Sozopol, Bulgaria, 390-396
- Gadzhev, G., K. Ganev, D. Syrakov, M. Prodanova, N. Miloshev, 2013d: Some Statistical Evaluations of Numerically Obtained Atmospheric Composition Fields in Bulgaria, Proceedings of 15th International Conference on Harmonisation within Atmospheric. Dispersion Modelling for Regulatory Purposes, Madrid, Spain.
- Grell, G.A., Dudhia J., and Stauffer D.R., 1994: A description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note, NCAR TN-398-STR, 138.
- Thunis P., D. Pernigotti, M. Gerboles, 2013a: Model quality objectives based on measurement uncertainty. Part I: Ozone. Atmospheric Environment 79, 861-868
- Thunis P., D. Pernigotti, M. Gerboles, 2013b: Model quality objectives based on measurement uncertainty. Part II: NO2 and PM10. Atmospheric Environment 79, 869-878
- Visschedijk, A., Zandveld P., van der Gon, H., 2007: A high resolution gridded European emission database for the EU integrated project GEMS, TNO report 2007-A-R0233/B, The Netherlands