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Abstract: The studies about health effects are often based on data inferred by monitoring stations. For this purpose, 

pollutants exposure maps are crucial for evaluating health effects. Studying the Polycyclic Aromatic Hydrocarbons 

(PAHs) and the Benzo(a)Pyrene (BaP) exposure in urban areas is the major goal of the EXPAH LIFE+ Project. An 

integrated approach, based on measurements and modeling techniques, was applied to simulate PAHs and BaP levels 

in the Rome metropolitan area. Field campaigns of PM2.5 with PAHs content were performed for the period June 

2011 - May 2012, and a chemical transport model (FARM) was applied to reconstruct PAHs urban concentrations. In 

this work, Machine Learning methods have been applied to forecast atmospheric pollution, trying also to improve the 

results achieved by FARM. In particular, Support Vector Machines (SVMs) have been used. They represent one of 

the most common approaches among Machine Learning methods. Starting from the experimental data, SVM methods 

have been applied to build models able to forecast PAHs and BaP exposure. The SVM models seem to show 

excellent results in the reproduction of experimental data and in generalization, improving those achieved by FARM. 

Finally, the SVM models have produced very congruent PAHs and BaP exposure maps. 
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INTRODUCTION 

Epidemiological studies about health effects of air quality are often based on data inferred by monitoring 

stations. The issue of constructing pollutants exposure maps is crucial for improving such studies. The 

study of the Polycyclic Aromatic Hydrocarbons (PAHs) and the Benzo(a)Pyrene (BaP) exposure in urban 

areas is the major goal of the EXPAH LIFE+ Project (www.ispesl.it/expah). An integrated approach, 

based on measurements and modeling techniques, was applied to simulate PAHs and BaP levels in the 

Rome metropolitan area. PAHs are pollutants linked to combustion processes and they can be considered 

relevant for health problems, especially in high density urban areas. The following PAHs compounds 

were measured during some previous field campaigns: benz[a]anthracene (BaA), benzo[b]fluoranthene 

(BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-

cd]pyrene (IP) and dibenz[a,h]anthracene (DBA). 

In particular, this work has focused on the overall PAHs (which will be referred to as PAH, henceforth) 

and on BaP. Supervised Machine learning methods have been applied for estimating their concentrations. 

The usefulness of these methods lies in their capability to produce good predictions for new samples 

(never used during the training phase). The purpose of Supervised Machine Learning methods is to build 

a virtual machine able to learn the rules (supposed to be unknown) linking the outputs to the inputs of a 

system from a set of samples. The training phase consists in an adaptive process which provides an 

analytic description of the output function. 

Support Vector Machines (SVM; Vapnik, 1995) are a class of Machine Learning methods and they have 

been used in this work. They were rarely used for air dispersion modeling.  

The dataset that has been used contained one year air quality data concerning the urban area of Rome. 

Data were collected between June 1, 2011 and May 30, 2012. The region of interest was an area 60 km × 

60 km, centered on the city of Rome. 

SVMs have been used to build a model able to forecast PAH and BaP concentrations starting from data 

measured by urban stations. Then, this model has been applied to construct daily maps. 

 

2. MATERIALS AND METHODS 

2.1 DATASET CHARACTERISTICS 

The region of interest was divided into 3600 pixels (each one 1 km × 1 km) and three kinds of variables 

have been initially considered: meteorological variables, pollutants emissions and the outputs produced 



by deterministic models (FARM bc and FARM fc models). All these values were on a daily basis and 

were available for each pixel and for each day (totally, there were 60*60*365 = 1314000 daily samples). 

Meteorological variables included wind direction, wind speed, pressure (P), precipitations (Rain), relative 

humidity (RH), temperature (T) and total cloud cover (TCC). 

In this work, the so-called mix models methodology has been applied: it consists in considering 

deterministic air dispersion forecasts as input variables. The use of the outputs of deterministic models as 

input variables for intelligent methods was first developed in (Pelliccioni et al., 2003) and the theoretical 

explanation can be found in (Pelliccioni and Tirabassi, 2006 and 2008). In our case, the presence of 

deterministic information (from FARM bc) among the input variables it’s fundamental for the model 

performance, as will be shown below. 

Moreover, 184 actual PAH and BaP measurements have been used as output target values for the SVM. 

These measurements came from some campaigns distributed over all the seasons and in different sites of 

the area. They were on a daily basis and most derived from 2-10 days campaigns. 

 

2.2 MONITORING STATIONS AND INPUT VARIABLES SELECTION 

 

Two different problems have been faced to create the maps: the first one concerned the best choice of the 

monitoring stations representing the urban pollutant dispersion, the second one concerned which variables 

(i.e. features) to use as model inputs and how to treat them.  

The SVM model had to be applied to build maps of the whole area. So, the monitoring stations to use in 

training and testing phases have been selected so that the model could be effectively assessed both for 

urban and non-urban conditions. All the stations chosen for training were located within the urban area, 

while some of the remaining 10 testing stations were located far away from the city. 

Regarding the second issue, a preliminary analysis has been first conducted to study the probability 

density distributions and the domains of each variable. In this way, it has been possible to choose an 

appropriate normalization. Moreover, for Machine Learning methods, it is well known that using only a 

subset of the original variables could lead to better performances. So, a features selection procedure has 

been carried out, in order to select the subset of features providing the best test results. 

In particular, different simulations have been conducted, using different subsets of features. In each 

simulation, SVMs have been built following two steps: the training phase (where the machine has been 

effectively built with the samples of the training set), and the testing phase (where the model performance 

has been assessed with the samples of the test set). 

The results are shown in Table 1 for PAH and in Table 2 for BaP. 

From the results of Table 1 and Table 2, it is evident how much the choice of the input variables is crucial 

for the model performances.  

Combining all the strategies described, the subset of input variables with the best test results has been 

finally selected: date, wind direction, wind speed, precipitations, total cloud cover, and PAH/BaP 

estimates by FARM bc. These variables have been used in the final SVM model.  

 

 

Table 1. PAH test results using different subsets of input variables 

 INPUT VARIABLES TEST RESULTS 

 Date Meteo Emissions PAH by FARM bc MAE (ng/m3) R2 slope bias (ng/m3) 

s1  x   0.64 0.86 0.91 0.23 

s2  x x  0.61 0.88 1.01 0.01 

s3  x x x 0.51 0.91 0.90 -0.01 

s4  x  x 0.45 0.90 0.92 0.05 

s5 x x   0.49 0.88 0.88 0.04 

s6 x x x  0.46 0.89 0.95 0.07 

s7 x x x x 0.53 0.90 0.93 0.00 

s8 x x  x 0.44 0.90 0.90 0.07 

 

 

 



Table 2. BaP test results using different subsets of input variables 

 INPUT VARIABLES TEST RESULTS 

 Date Meteo Emissions BaP by FARM bc MAE (ng/m3) R2 slope bias (ng/m3) 

s9  x   0.18 0.86 0.85 0.05 

s10  x x  0.15 0.87 0.88 0.03 

s11  x x x 0.17 0.88 0.88 0.00 

s12  x  x 0.14 0.88 0.86 0.00 

s13 x x   0.13 0.90 0.87 0.01 

s14 x x x  0.16 0.87 0.86 0.01 

s15 x x x x 0.15 0.88 0.84 0.01 

s16 x x  x 0.12 0.89 0.87 0.01 

 

3. RESULTS 

As explained in the previous paragraph, SVMs performances have been validated with the samples of the 

test set. These results have been compared with those obtained by two deterministic models: FARM bc 

and FARM fc. 

As shown in Table 3 and in Table 4, the SVM models provide much better results than the other two 

models on all indices, both for PAH and for BaP.  

 

Table 3. Comparison between test results obtained by SVM, FARM bc and FARM fc to forecast PAH concentrations 

  MAE (ng/m3) R2 slope bias (ng/m3) FB NMSE r CV IOA 

sA SVM 0.37 0.93 0.96 -0.04 -0.06 0.15 0.96 0.37 0.98 

 FARM bc 2.34 0.83 2.00 0.57 0.57 1.90 0.91 1.66 0.75 

 FARM fc 0.61 0.80 0.78 0.25 -0.09 0.43 0.90 0.60 0.94 

 

Table 4. Comparison between test results obtained by SVM, FARM bc and FARM fc to forecast BaP concentrations 

  MAE (ng/m3) R2 slope bias (ng/m3) FB NMSE r CV IOA 

sB SVM 0.11 0.92 0.94 -0.03 -0.10 0.20 0.96 0.41 0.98 

 FARM bc 0.78 0.78 2.23 0.22 0.67 2.75 0.89 2.15 0.68 

 FARM fc 0.18 0.76 0.71 0.08 -0.13 0.63 0.88 0.69 0.91 

 

The models built for sA and sB have been applied to all the 1314000 daily samples to construct daily PAHs 

maps. Note that the model has been built for reproducing daily concentrations representing 2-10 days 

periods. So a little forcing was necessary to build daily maps. Moreover, taking account of the training 

samples locations, a generalization capability has been required by the SVM. 

Generally, when building large area maps, not all pixels are covered by measurements and it is difficult to 

test them. In this work, indirect performance indices have been introduced in order to overcome this 

difficulty. Their role is to assess the model results using criteria that do not need the comparison between 

predicted and observed values. Here, the following indices have been developed: 

 𝑅𝑛𝑒𝑔 measures the percentage of negative values; 

 𝑅𝑈−𝑁𝑈 indicates the percentage of days where pollutants concentrations is lower in the urban 

than in a non-urban area. 

To define 𝑅𝑈−𝑁𝑈, three pixels have been fixed: one over sea (South-West of the area), one over lake 

(South-East of the area) and one in the center of Rome. They have been selected because representing 

urban and non-urban conditions. To compute 𝑅𝑈−𝑁𝑈 for PAH, only those days where the SVM output in 

the city is higher than 1 ng/m3 and the difference between the concentration over sea (or lake) and the 

concentration in the city is more than 0.2 ng/m3 have been counted. 

As for daily PAH exposure maps, the following index values have been obtained: 𝑅𝑛𝑒𝑔 = 0, 𝑅𝑈−𝑁𝑈 =

3.29% comparing city with sea, and 𝑅𝑈−𝑁𝑈 = 2.74% comparing city with lake. 

A comparison between the daily PAH estimates produced by FARM bc and by SVM at the three 

representative pixels (city, sea, lake) pointed out the congruent behavior of the SVM model and its 

generalization capability. It produces estimates mostly lower over the urban area than outside, even 



though only urban samples have been used for training. Moreover, no remarkable difference exists 

between the different seasons for the estimated concentrations over sea and over lake. 

In order to evaluate the annual average exposure, the daily maps can be used to build the annual average 

exposure maps, just computing the annual average estimates for each pixel. 

The resulting maps are shown in Figure 1a, 1b and 1c. 

All the maps produce higher values in the urban area than outside. However, while the maps obtained by 

FARM bc and by FARM fc are strongly related, the maps produced by SVM show a slight shape 

different. Still referring to the maps illustrated in Figure 1a, 1b and 1c, the mean PAH values over all the 

area are 2.23 ng/m3, 0.98 ng/m3 and 1.78 ng/m3 for FARM bc, FARM fc and SVM, respectively. 

These maps seem to provide a further confirm of the results obtained in the test phase, where the 

estimates produced by the SVM model are between those obtained by FARM bc (that tends to 

overestimate) and those produced by FARM fc (that tends to underestimate). 

BaP annual maps are shown in Figure 2a,b,c. The mean BaP values over all the area are 0.66 ng/m3, 0.24 

ng/m3 and 0.47 ng/m3 for FARM bc, FARM fc and SVM, respectively. 

The following index values have been obtained: 𝑅𝑛𝑒𝑔 = 2.04%, 𝑅𝑈−𝑁𝑈 = 6.30% comparing the city 

with the sea, and 𝑅𝑈−𝑁𝑈 = 5.48% comparing the city with the lake. 

  

       FARM bc (a) FARM fc (b) SVM (c) 

 
Figure 1. Annual mean PAH exposure maps by FARM bc (a), FARM fc (b) and SVM (c), in ng/m3 

 

            FARM bc (a) FARM fc (b) SVM (c) 

 
Figure 2. Annual mean BaP exposure maps by FARM bc (a), FARM fc (b) and SVM (c), in ng/m3 

 

4. CONCLUSIONS 

Support Vector Machines (SVMs) are a class of Machine Learning methods, whose purpose is to use 

some samples to learn the rules that link the outputs to the inputs of a system through an adaptive learning 

process. These methods have been applied to forecast PAH and BaP concentrations on an area 60 km × 

60 km, centered on the city of Rome over one year period, using one year air quality data and some actual 

measurements distributed over all the seasons. 

The input variables initially considered are the following: date, meteorological variables, emissions and 

the outputs produced by FARM bc. Moreover, 184 actual PAHs concentration measurements were 

available and they have been used as SVM output targets. PAHs concentration measurements came from 

2-10 days campaigns distributed over all the seasons and in different sites. 



Different problems have been faced to obtain a good spatial reproduction of pollutants concentrations. 

The main issues concerned the choice of the monitoring stations to use for training and for testing, the 

way to scale the variables to make the model able to generalize, the choice of the best model inputs and 

the reconstruction of daily maps. 

Once the SVM models have been built, they have also been applied to all the daily samples to build daily 

exposure maps. 

Generally, when constructing maps, it’s impossible to know the actual measurements in each point and in 

each day. For this reason, it’s been necessary to introduce new indices to assess the maps. The choice of 

these indices is based on the observation that measurements can’t assume negative values and pollutants 

concentrations are expected to be higher in urban areas than in non-urban areas. They measure the 

percentage of negative values and the percentage of days where pollutants concentrations is lower in the 

urban area than in a non-urban area, respectively.  

As for PAH, the performances show values close to zero for the first index, and between 2.7% and 3.3% 

for the second one. As for BaP, the performances show values around 2% for the first index, and between 

5.5% and 6.3% for the second one. 

The overall results seem to confirm the SVM capability to reconstruct PAH and BaP spatial concentration 

and to produce realistic maps for both of them. 
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