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Abstract: Uncertainty and sensitivity analysis can potentially increase the transparency in the modelling process and 

guide research in the relationship between model and data. The uncertainty and sensitivity of the Operational Street 

Pollution Model (OSPM), being an example of a semi-parameterised air quality model, have not been studied before, 

and it is therefore the aim to explore the potential advantages of this type of analyses on atmospheric models. An 

iterative parameter estimation and identifiability analysis methodology along with two different data splitting 

methodologies were chosen for the present study. The results show that this type of methodology can be informative 

applied to an atmospheric model, in that the methodology successfully balances the model-measurement errors 

among the different streets and the different species. Moreover, the results indicate where future research effort in 

model improvement should be directed, with respect to parameterisations and model parameter uncertainty.  
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INTRODUCTION 

Over the last decades the use of air quality models for forecasting and scenario studies have become 

increasingly popular. When using air quality models for planning and decision making, the transparency 

and the reliability of the results can be enhanced through the analysis of model uncertainty. The use of 

uncertainty analysis has also been fostered by the rapid development in computational power, due to the 

large computational requirements of this type of analysis. 

 

The Operational Street Pollution Model (OSPM) has been frequently used over the last two decades, with 

emphasis in recent years moving towards forecasting and scenario studies (Kakosimos et al. 2010). This 

development has happened alongside the large increase in measurements resulting from national 

measurement programmes, which is now available for model validation studies. This means that 

uncertainty analysis based on non-linear regression of semi-parameterized models has become feasible 

and could potentially determine hitherto uncertain parameter values or guide research efforts with respect 

to parameter values and parameterisations. 

 

It is therefore the aim of the present study to examine the model parameter uncertainty of OSPM through 

the application of a parameter estimation (uncertainty analysis) and identifiability analysis (sensitivity 

analysis) methodology and, in this way, gain insight into the potential advantages of application of this 

type of analysis within atmospheric science. 

 

MODEL DESCRIPTION 

OSPM is a semi-parameterised model for pollutant concentrations in a street canyon, where the measured 

concentrations are modelled as a sum of a direct contribution and a recirculating contribution, as 

illustrated on Figure 1, both calculated through algebraic expressions. The length of the recirculation zone 

is in the model determined by the wind speed and the upwind building height. This means that, as a rule, 

the leeward receptor is exposed to emissions from inside the recirculation zone, and the windward 



receptor is exposed to emissions from outside the recirculation zone (Hertel and Berkowicz 1989b, 

Berkowicz et al. 1997, Ottosen et al. 2014). 

 
Figure 1. Schematic illustration of the direct and recirculating component of the concentration in OSPM. Figure 

modified from (Silver, Ketzel, and Brandt 2013). 

 

The specific characteristics of the model are: 

 The direct contribution is modelled as a Gaussian plume model, where the emissions are 

homogeneously distributed in the full length and width of the canyon. The Gaussian plume uses 

a top hat distribution for the vertical diffusion and assume that horizontal diffusion can be 

neglected. 

 The recirculating contribution is modelled as a trapezium shaped box model with the 

fundamental assumption that the inflow of pollutants equals the outflow of pollutants. This is 

justified based on the temporal resolution of the model of one hour. 

 Moreover, the model contains algebraic expressions for traffic produced turbulence and a 

numerical averaging procedure to account for wind direction meandering especially pronounced 

for low wind speeds (Hertel and Berkowicz 1989c). 

 The emissions are modelled using the COPERT IV emission model (EEA 2009). The parameters 

of the emission model is not included in the subsequent parameter estimation to limit the scope 

of the study.  

 The model contains an algebraic expression for the conversion of NO to NO2 in the presence of 

Ozone (Hertel and Berkowicz 1989a). To limit the scope of the present study, the parameters of 

this conversion scheme has been left out of the subsequent analyses. 

 

METHODOLOGY 

The iterative parameter estimation and identifiability analysis as presented by Brun, Reichert, and Künsch 

(2001) has been adopted for the present study due to its widespread use in other scientific disciplines 

(cited 157 times in Web of Science as per July, 2014). The methodology consists of running parameter 

estimation and identifiability analysis in an iterative cycle until convergence between the estimated 

parameters and the identifiability of the parameters is achieved.  

 

The parameter estimation is performed using standard weighted non-linear regression techniques (Seber 

and Wild 1989).  

 

The identifiability analysis is based on the calculation of two measures: The sensitivity measure and the 

collinearity index. The sensitivity measure is calculated as the root mean square of the non-dimensional sensitivity, 

which again is the non-dimensional local sensitivity of the model output with respect to a change in a model 

parameter, all other model parameters kept constant. As such, the sensitivity measure represents an average of how 

much the output of the model changes with the individual parameter in the neighbourhood of the original model 

parameter. The collinearity index is a measure of to what extend it is possible to cancel a change in one model 

parameter by linearly adjusting the other model parameters. If the sensitivity of the model to changes in two or more 



model parameters are linearly independent, the collinearity index will be equal to unity, otherwise it will go towards 

infinity. The sensitivity measure and the collinearity index are used together to find a parameter combination that is 

only slightly influenced by collinearity and with a reasonable sensitivity. Such a parameter combination will be less 

prone to overfitting, and thus yield less uncertain parameter estimates. The above methodology is based on local 

sensitivity analysis, and if the estimated parameters are far from the original parameters the analysis have to be 

repeated again. 

 

Before the above analysis was initiated the data were split into an estimation and a prediction set, to assess both the 

replicative and the predictive validity of the model, using two different approaches that have been in use in the 

literature: The DUPLEX  data splitting procedure (Snee 1977) splits the data into an estimation- and a prediction data 

set based on the Euclidean distance to the data point from the data points already split, thus creating two non-identical 

dataset with similar statistical properties. The seasonal data splitting procedure (used among others by Silver, Ketzel, 

and Brandt (2013)), splits the data into an estimation- and prediction data set such that the first six months of the year 

are used for estimation, and the last six months of the year are used for prediction. The performance of the two data 

splitting approaches were subsequently compared. 

 

RESULTS AND DISCUSSION 

 
Figure 2. Root mean square local sensitivity for the DUPLEX estimation set (blue) and the Seasonal estimation set 

(red) for respectively NOx (left) and NO2 (right). 

The results of the local sensitivity analysis are shown in Figure 2. It can be seen that the sensitivity of the 

model to changes in the individual parameter decreases approximately linearly for both species and that 

there are only marginal differences in the sensitivity among the two data split. The reason behind this is 

the large dataset used for the present study (five street canyons and years 1994-2010), which means that 

the parameters will be sensitive proportionally to their influence in the dataset. 

 

The sensitivity of the model to changes in the individual parameters is lower for NO2 than for NOx, which 

is caused by the fact that the NO2 concentrations are calculated as a function of the NOx concentrations. 

The different order of parameter sensitivity of NO2 compared to NOx is caused by the model structure. 

 

What can be seen from Figure 2 is that the most influential model parameters are the ones controlling the 

street level wind speed (b, froof, and h0), and the parameter controlling the length of the recirculation zone 

(c). This is not surprising given that the wind speed is a very important factor in all Gaussian plume 

models, and since the length of the recirculation zone controls the emission that the leeward receptor is 

exposed to, the sensitivity of the model to this parameter is neither surprising. 

 

As can also be seen from Figure 2 there is a number of parameters with very low sensitivity. This means 

that these parameters can be set at any value (locally), without changing the model output significantly. In 

a modelling context this should be avoided, since these parameters have large uncertainties, and thus a 

model improvement approach could be to try to remove some of these parameters or replace them with 

parameters of high sensitivity through a change in parameterisations. Moreover, the above analysis serves 

to guide as to which parameters future research attention should be given. 

 

The collinearity analysis shows that 12 model parameters can be estimated out of a total of 16 model 

parameters. 



 

 
Figure 3. Average concentration as a function of wind direction for all years for Vesterbro street in Aalborg, 

Denmark. Results are for respectively NOx (left) and NO2 (right). 

 

The parameter estimation results in two sets of parameters (one for each data split), that are significantly 

different (results not shown). Exploring the performance of the two parameter sets in terms of correlation 

coefficient (R
2
), fractional bias, and normalized mean square error however, show very little difference. 

An example of this is shown on the wind direction plot of Figure 3. It is evident from the figure, that the 

two fitted parameters have a better mean performance than the original model parameters, however it 

seems like the Seasonal fit have slightly better performance than the DUPLEX fit. An inspection of the 

histograms of the different dimensions of the two data split show very little difference. The difference in 

fitted model parameters can thus be explained by that whereas the Seasonal data split is more 

representative for the whole data set, since the representation of situations in the data set are proportional 

to the representations in the full data set, the DUPLEX data split has a better coverage of the different 

situations the model can be exposed to. This could be interpreted as that the Seasonal data split is more 

relevant in a forecasting setting, whereas the DUPLEX data split is more relevant in a model design 

setting. 

 

It can as well be seen from Figure 3 that the parameter estimation procedure have balanced the errors 

such that the performance is approximately similar for the concentrations of NOx and NO2. This is as well 

the case for the other streets where the parameter estimation procedure have balanced the errors among 

the included species and among the streets. This is desirable for a model like OSPM, which is designed to 

have an equal performance for all streets, meaning that the parameters should be interpreted as constants 

and not be recalibrated for each street. 

 

The phenomenon that two (or more) models (or model parameter sets, model parameterisations, etc.) have 

approximately equal performance is known as equifinality (Beven 2006). Equifinality in the model 

parameters arise in the interplay between the model structure and the data used for parameter estimation. 

The underlying assumption in all parameter estimation procedures is that the model structure is correct. 

Since this will seldom be the case in environmental science, the estimated parameters will compensate for 

deficiencies in model structure, and parameters will change with the data used for fitting. This serves as a 

kind of identifiability problem not accounted for in the identifiability analysis, since the identifiability 

analysis applied here inherently is of local nature. One could argue that the number of identifiable model 

parameters should be reduced until the model parameter uncertainty would be within acceptable limits, 

however, this poses several problems: First there is no procedure to decide which model parameters to 

determine using parameter estimation and which to determine by other means. Second, reducing the 

number of estimated model parameters would make the estimated parameters dependent on other (poorly 

defined) parameters, and the parameter estimate might thus not be more reliable. Third, leaving 

parameters with high uncertainty out of the analysis will make the analysis less informative. Statistical 

parameter estimation should thus not be rejected in atmospheric modelling due to model parameter 

equifinality, since other methods of parameter estimation might suffer from the same deficiencies. 

 



From a modelling point of view model parameter equifinality should be minimised, since this constitutes 

uncertainty in the model. This can either be done by making the model more suitable to the existing data, 

through e.g. removal of non-sensitive parameters, creation of more accurate parameterisations etc. or 

through acquiring better data for parameter estimation. 

 

The identifiability analysis on the estimated parameters for the DUPLEX and the seasonal data split show 

that both sets of parameters are identifiable. 

 

CONCLUSION 

A number of experiences have been gained from the application of parameter estimation and 

identifiability analysis to the Operational Street Pollution Model: 

 The sensitivity measure presented in Figure 2 serves to guide the future research efforts into 

which aspects of the model to improve. Moreover, the results indicate that, if possible, some 

parameters should be eliminated from the model. 

 The results of the parameter estimation show that it is possible to apply this methodology to a 

semi-parameterised air quality model, and that the procedure will balance the model 

performance among individual streets and individual species. 

 Through data splitting it was shown that the combination of model and data result in model 

parameter equifinality. Future research efforts should serve to quantify this phenomenon and 

through improved modelling efforts reduce this phenomenon. 

Summing up, the parameter estimation and identifiability analysis methodology applied in the present 

study have not provided accurate estimates of the model parameters in OSPM, however, the methodology 

has increased the transparency of the relationship between the model and the results and provided 

guidance of further research in improving the model. 
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