

A FAST RELIABLE ALGORITHM FOR POINT SOURCE LOCALIZATION: APPLICATION TO A NEW KITFOX DATA SET

Grégory TURBELIN gregory.turbelin@ufrst.univ-evry.fr

S. K. Singh, H. Kouichi, N. Bostic, A. A. Feiz, P. Ngae, J.P. Issartel

Laboratoire de Mécanique et d'Energétique d'Evry Université d'Evry, France

http://lmee.univ-evry.fr/

- ➔ Accidental or intentional atmospheric contaminant release (local scale)
 - Source estimation methods aim to estimate
 - source(s) location(s)
 - source type, strength, and number
 - release start time and duration
 - Given :
 - site description (terrain, vegetation, building)
 - available meteorological information
 - *m* concentrations measured by a network

Several source estimation algorithms are currently being developed

The discrete inverse problem

 \rightarrow Source described, on a grid of *N* points, by a source vector **s**

→ It generates a field of concentrations only known through m observations µ_i=C(x_i) at locations x_i (i=1...m)

The problem consists in determining the *N* unknown components of the source vector from the *m* measurements

The renormalization technique

- use of a minimum of a priori information
- use of adjoint transport equations (receptors oriented modeling technique)
- computation of a renormalizing function

- → It returns a source estimate which is linear with respect to the observations
 - Issartel et al. (2005, 2007): utility of the renormalization to minimize inversion artifacts
 - Sharan et al. (2009): reconstruction of a single ground-level point source
 - Singh et al. (2013): identification of multiple-point sources releasing similar tracer
 - Turbelin et al. (2014): generalization for discrete inverse problems

For a matter of simplicity, this presentation only deals with continuous releases, for time varying releases see Issartel et al. (2007)

The linear model

 $\mathbf{A} = \begin{pmatrix} a_1^1 & \cdots & a_1^N \\ \vdots & \ddots & \vdots \\ a_m^1 & \cdots & a_n^N \end{pmatrix}$

➔ The concentrations measured at the captors locations are linear functions of the sources, the multiplicative factor being the retroplumes matrix A

components obtained by solving adjoint equations

Retroplumes matrix (*mxN*)

Error vector (*N*x1)

Unknown source

vector (*N*x1)

Measurements vector (*m*x1)

m < <*N* underdetermination

 $\mu = As + \varepsilon$

5

□A minimum weighted norm solution

- → Any solution to the problem can be written as $\hat{s} = G\mu$
 - **G** $(N \times m)$: some generalized inverse of **A**

$$\mathbf{s}_{/\!/\mathbf{w}} = \mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \boldsymbol{\mu} = \mathbf{W}^{-1} \mathbf{A}^{\mathrm{T}} (\mathbf{A} \mathbf{W}^{-1} \mathbf{A}^{\mathrm{T}})^{-1} \boldsymbol{\mu}$$

- unique minimum W-weighted norm solution of the problem, i.e. $\mathbf{s}_{/\!/\mathbf{W}}$ minimizes $\|\mathbf{s}\|_{\mathbf{W}} = \sqrt{\mathbf{s}^{\mathrm{T}} \mathbf{W} \mathbf{s}}$
- Optimal diagonal weight matrix W (N×N), in case of a single point source
 - the maximum value of the estimate corresponds to the location of the source
 - the release intensity of the source is given by Intensity = $\frac{s_{//W}(\mathbf{x}_0)}{w(\mathbf{x}_0)}$

Harmo 16, Varna 8-11 Sept. 2014

The renormalization condition

Optimal reconstruction of position and intensity of all single sources, when (renormalization condition)

$$diag(\mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}}) \equiv 1 \text{ with } w_{jj} > 0 \text{ and } \sum_{j=1}^{N} w_{jj} = m$$

- The components of the optimal weight function are the discrete values of the visibility function
 - characterizes the regions well or poorly monitored by the network
 - focus at the detectors locations
 - decreases with increasing downwind distance

It has been interpreted as the prior distribution of the emissions apparent to the monitoring system

$$\mathbf{S}_{/\!/\mathbf{W}} = \mathbf{W}^{-1}\mathbf{A}^{\mathrm{T}}(\mathbf{A}\mathbf{W}^{-1}\mathbf{A}^{\mathrm{T}})^{-1}\boldsymbol{\mu} = \mathbf{A}_{\mathbf{W}}^{+}\boldsymbol{\mu}$$

- computed by "classical" matrix operations
- or by making use of the pseudo inverse concept

$$\mathbf{A}_{\mathbf{W}}^{+} = \mathbf{W}^{-1/2} (\mathbf{A}\mathbf{W}^{-1/2})^{+}$$

- "(.)+": Moore–Penrose inverse of a matrix
- → Several efficient algorithms to obtain a pseudo-inverse
 - the most reliable one is based on the Singular Value Decomposition method

But the optimal matrix **W** has first to be computed

Computation of the optimal weights

→ "The components of W are the diagonal elements of the resolution matrix R when the diagonal elements of the symmetric matrix R_w are equal to one"

$$\mathbf{R} = \mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A} \qquad \mathbf{R}_{\mathbf{w}} = \mathbf{A}_{\mathbf{w}}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{A}_{\mathbf{w}}$$
$$w_{jj} = R_{jj} = w_{jj}^{-1} \mathbf{a}_{j}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{a}_{j} \text{ when } R_{wjj} = w_{jj}^{-2} \mathbf{a}_{j}^{\mathrm{T}} \mathbf{H}_{\mathbf{w}}^{-1} \mathbf{a}_{j} = 1$$

\rightarrow This algorithm converges uniformly to the optimal weights matrix W

```
Algorithm 1. Computing the optimal weighted matrix W
Require: Let \mathbf{A} \in \mathbb{R}^{N \times m}.
1: N=columns[A]
2: m=rows[A]
3: W=m/N*I<sub>N</sub>
4: while d_{min} \leq =0.99
               H^{-1} = (AW^{-1}A^{T})^{-1}
5:
6:
                              For j=1 to N
7:
                              a_i = A(j)
                              \mathbf{d}_{\mathbf{j}} = \mathbf{a}_{\mathbf{j}}^{\mathbf{T}} \mathbf{H}^{-1} \mathbf{a}_{\mathbf{j}}^{*} \mathbf{w}_{\mathbf{ii}}^{-2}
8:
                              End for
9:
               d_{\min} = \min(d)
10:
               W=W^*(diag[d])^{1/2}
11:
12: end while
13: return W
```

(initialization of **W**) (definition of the convergence criteria) (computation and inversion of the weighted Gram matrix)

```
(writing the j columns of the matrices A as vectors)
(computation of the diagonal elements of \mathbf{R}_w,
stored in a vector d)
(convergence verification)
(definition of a new weight matrix)
```

Harmo 16, Varna 8-11 Sept. 2014

EVRY

The Kit Fox series

- Conducted at the Nevada Test Site (USA) in late August and early September 1995
 - CO₂ was released as a tracer
- ➔ 3 different surface roughness configurations:
 - ERP + URA
 - URA only
 - Smooth Desert Surface

➔ The smooth desert releases, also referred to as the "DRI /WRI CO2-II" experiments, have been described in a separate report (Coulombe et al., 1999) never published and only mentioned by King et al. (2002)

These late experiments have never been used for evaluation purposes

The smooth desert kitfox experiments

➔ Sensors on 3 arrays oriented perpendicular to the centreline of the predicted transport course of the cloud

- → 30 releases under neutral to extremely stable conditions
 - 22 short duration releases (1.5 kg/s over 20s)
 - 8 continuous releases (1-1.5 kg/s over 150-360s)

Test	Average wind speed	Average wind direction	Release rate	Release duration	Stability
No.	2m a.g.l. (ms ⁻¹)	2m a.g.l. (degree)	(kgs-1)	mm:ss	Class
9-4	3.5	234	1.527	2:31	D-E
9-7	2.5	229	1.497	3:31	F
9-9	1.9	235	1.438	5:31	F-G
10-5	2.0	232	1.037	5:58	G+
10-6	1.9	198	0.995	5:00	F-G
12-7	1.6	211	1.019	4:59	F-G
13-6	3.0	227	1.114	3:32	E
13-7	2.3	213	1.028	3:00	F

Table 1: Characteristics of the continuous release experiments

EVRY

Inputs for the renormalization method

- Components of A computed from an analytical Gaussian dispersion model (Sharan et al., 1996) used in a backward mode
 - use of Briggs' model for dispersion parameters

- Concentrations from 24 captors of the 50m and 100m arrays averaged to obtain the measured concentrations vector μ (i.e. m=24)
- → Technique implemented on a discretized domain of 300×300 points (i.e. N=90000) with ∆x =∆y=1m

On a machine Intel[®] Core[™] i5-3427U CPU 1.80GHz, 8Go RAM, the CPU time involved in estimating the components of **A**, **W** and **s**_{//w} was approximately <30 seconds

Results and discussion

- → Regions
 - well monitored by the network: white
 - poorly monitored by the network: black

The source location (middle of the domain) lies in a well monitored region of the network

Visibility of the monitoring network for cases 9-9,12-7 and 13-7

Results and discussion

The maxima of $\mathbf{s}_{I/\mathbf{w}}$ is unique and sharp at position (x_s, y_s)

- lateral direction: $0 \le \Delta y_s / x_m \le 0.08$
- longitudinal direction: $0 \le \Delta x_s / x_m \le 0.2$
 - x_s is placed upstream of the true position, basically because A has been derived from a Gaussian model with constant mean wind speed, direction and empirical dispersion parameters

S_{//w} for cases 9-9,12-7 and 13-7

➔ The discrete source estimate given by the renormalization technique is

$$\mathbf{s}_{//w} = \mathbf{W}^{-1}\mathbf{A}^{\mathrm{T}} (\mathbf{A}\mathbf{W}^{-1}\mathbf{A}^{\mathrm{T}})^{-1} \boldsymbol{\mu}$$
 with $\mathbf{W} = \operatorname{diag}(w_1, w_2, \dots, w_N)$

corresponds with the minimum W-norm solution of the underdetermined linear inverse problem

$$s_{/\!/_W} = A^+_W \mu$$

- a computationally reliable way to compute the pseudo inverse is by using the Singular Value Decomposition (SVD)
- but a specific algorithm must be used to compute the optimal weight matrix
- Applied to a new KITFOX data set, the source is observed to be distinctly located and converges onto reasonable estimates
 - new results needed with a more appropriate dispersion model

Thank you for your attention

<u>gregory.turbelin@ufrst.univ-evry.fr</u>

http://lmee.univ-evry.fr/

Harmo 16, Varna 8-11 Sept. 2014