

16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 8-11 September 2014, Varna, Bulgaria

# Environmental Sensitive Traffic Management System PROKAS<sup>Online</sup>

#### Dipl.-Ing. Helmut Lorentz, Tilo Hoffmann, Ingo Düring, Torsten Bayer

helmut.lorentz@lohmeyer.de

**Overview** 



- Introduction
- Functionality
- Resolution
- Environmental Modules
- Examples
- Accuracy of the Prognoses
- Experiences
- Conclusion
- Endnote

## Introduction

Ingenieurbüro Lohmeyer GmbH & Co. KG Karlsruhe und Dresden

- Exceedances of the limit value NO<sub>2</sub> (AM) and/or PM10 (DLV)
- Clean Air Plan or Requirement for approvals of road projects













Environmental Module with TMC and traffic flow model, Automatically Action as input for the traffic model) e.g. Potsdam

# **Question for implementation**

- Which Environmental Module should be used in the ETMS?
- Which input parameters /monitoring data should be required?
- Which traffic related measures should be realized?
- What about the effectivity of the ETMS?
- What kind of influence have the ETMS to other parameters like noise, CO<sub>2</sub> or fuel consumption?
- Which complexity of the system is required? (static traffic data and simple traffic signs are sufficient? In which case dynamic data, electronically control of street lights and traffic signs are required → cost-benefit ratio?
- Which experiences of praxis exist? (interference liability, running costs, etc.)

#### **Methodic of the Environmental Modules**



|                         | ProFet                                                                                                                              | ProFet PROKA                                                                                                                                       |                                                                                                                                                                           |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method                  | Multiline Regression                                                                                                                | Emissions and Dispersion model                                                                                                                     |                                                                                                                                                                           |  |
| Dispersion<br>model     |                                                                                                                                     | Screening                                                                                                                                          | Detailed model                                                                                                                                                            |  |
| Spatial<br>Resolution   | Spatial<br>Resolution1 Point (Monitoring<br>station)Cat<br>(1)                                                                      |                                                                                                                                                    | Area wide and high<br>accuracy                                                                                                                                            |  |
| Input                   | Wind, Temperature,<br>precipitation, season,<br>duration of Inversion<br>situation, background<br>concentration, day of the<br>week | Wind, Temperature, global<br>radiation, background<br>concentration, amount of<br>traffic, traffic situation,<br>Categorized ribbon<br>development | Wind, Temperature, global<br>radiation, background<br>concentration, amount of<br>traffic, traffic situation,<br>Categorized ribbon<br>development, 3-D-building<br>model |  |
| Strength of application | Prognosis of PM10<br>concentration (daily<br>mean)                                                                                  | Prognosis of<br>concentrations of air<br>pollutants (hourly mean)<br>for road networks as well                                                     | Prognosis of<br>concentrations of air<br>pollutants (hourly mean) of<br>city areas                                                                                        |  |

# ProFet / PROKAS<sup>Online</sup>





08.09.2014

Environmental Sensitive Traffic Management System PROKAS<sup>Online</sup>

# **Example ProFet/PROKAS<sup>Online</sup> - LÜSA**

Ingenieurbüro Lohmeyer GmbH & Co. KG Karlsruhe und Dresden



Example of the external message mail (Halle):

Information of the monitoring and information system of Saxonia-Anhalt (LÜSA)

# Exceedance of the day limit value for Dust (PM10) in Halle!

Reason of the exceedance of the day limit value for PM10 of 50µg/m<sup>3</sup> are expected today and tomorrow in Halle, Merseburger Straße!

The mitigation measures of the clean air plan have to be activated.

#### **Mitigation Measure: Deviation of HDV Wittenberg**





HDV Deviation:

: Coswiger Landstraße – Heuweg – Möllensdorfer Straße – Rothemarkstraße – Dobschützstraße

Quelle: Geobasisdaten ©LVerm (www.lvermgeo.sachser

08.09.2014

10

# Maßnahme LKW-Umleitung Wittenberg



| No. | Activation: | Deactivation: | Days total |
|-----|-------------|---------------|------------|
| 1   | 30.01.12    | 09.02.12      | 11         |
| 2   | 10.02.12    | 15.02.12      | 6          |
| 3   | 15.03.12    | 19.03.12      | 5          |
| 4   | 22.03.12    | 26.03.12      | 5          |
| 5   | 22.10.12    | 25.10.12      | 4          |
| 6   | 14.11.12    | 19.11.12      | 6          |

Sum: 37 days

| No. | Activation:            | Deactivation: | Days total |
|-----|------------------------|---------------|------------|
| 1   | 14.01.13 <sup>1)</sup> | 18.01.13      | 4          |
| 2   | 24.01.13               | 28.01.13      | 5          |
| 3   | 06.03.13 <sup>2)</sup> | 08.03.13      | 1          |
| 4   | 14.03.13 <sup>3)</sup> | 15.03.13      | 1          |
| 5   | 10.04.13 <sup>4)</sup> | 11.04.13      | 1          |

#### Sum: 12 days

- <sup>1)</sup> 16:00, active from 15.01.13 08.00
- <sup>2)</sup> 15:00, active from 07.03.13 10.25
- <sup>3)</sup> 13:00, active from 14:00
- <sup>4)</sup> 10.45, active from 13:00 to 11.04.13 10.45

#### Albrecht, W. et al. (2012):

Reduction  $PM_{10}$ : max. 1 to 2 µg/m<sup>3</sup> of daily mean, 3 Exceedances during a period of 14 days

### **Example PROKAS**<sup>online</sup> City of Stuttgart



#### **Dispersion model: MISKAM**

08.09.2014

# **Prognosegüte (Basis = DWD-Prognose)**

Halle - Merseburger Straße 150 140 130 120 110 100 90 hg/m³ 80 70 60 50 40 30 20 10 0 01.05.2010 01.07.2010 01.09.2010 01.11.2010 01.11.2011 01.01.2012 01.03.2012 01.01.2012 01.09.2012 01.11.2012 01.01.2010 01.03.2010 01.01.2011 01.03.2011 01.05.2011 1.09.2011 01.05.2012 1.07.2011 Day 'HENN PM10\_Daily mean' - 'HEVC PM10\_Daily mean PM10-V(stat)

| Annual mean<br>2012 measured value<br>in μg/m³ |         | Annual mean<br>Prognosis PROKAS <sup>Online</sup><br>in µg/m³ |         | Annual mean<br>Prognosis ProFet<br>in µg/m³ |         |
|------------------------------------------------|---------|---------------------------------------------------------------|---------|---------------------------------------------|---------|
|                                                | PM10    | NO <sub>2</sub>                                               | PM10    | NO <sub>2</sub>                             | PM10    |
| Merseburger Str.                               | 24 (16) | 31                                                            | 29 (44) | 33                                          | 24 (16) |
| Paracelsusstraße                               | 29 (30) | 54                                                            | 33 (35) | 47                                          | - (-)   |

Values in parentheses = amount of exceedances of the day limit value of PM10

08.09.2014

Environmental Sensitive Traffic Management System PROKAS<sup>Online</sup>

### **Overview Functionality**

Ingenieurbüro Lohmeyer GmbH & Co. KG Karlsruhe und Dresden



## Endnote



- The Application of ETMS could increase the acceptance of traffic measures for improving environmental situations (Air quality and noise), because they are spatially and temporary limited. (low wind Conditions in combination with high background concentration and high traffic density, etc.)
- For the implementation it have to be considered the local conditions, the required sensors, the type of traffic measures and as well the determination of control values (substance of pollutant, threshold value etc.) and
- also the selection of the Environmental Module.
- ETM-Systems could useful for the following issues:
  - quantitative impact assessment
  - Informing people
  - CO<sub>2</sub>-Balancing of the traffic etc..



- Perfected Algorithms of evaluation are required for the autonomic operation. The accuracy of prognosis's must fulfill an minimum level (Evaluation of all input data for completeness and plausibility)
- The quality of the predicted input data (Meteorological data, traffic density, traffic situation, background concentration) determinates the accuracy of the prognosis

➔ frequently Controlling and Validation of the prognosis is required

 The validation of the predicted concentrations has to be done by considering current monitoring values but also by predicted input data.



Nearly every large city in Germany is using a traffic control system. The implementation of an environmental module is only an extension of an existing system. Nevertheless there are only a few samples for ETMS in Germany.

The dynamic ETMS requires financial sources according to the complexity of the selected method and the already installed infrastructure. An static system need less recourses.

The relation between financial sources and the effectivity of dynamic ETMS's is not clear yet. Also there is the unanswered question, if there exists an optimum of the ETMS according to e.g. position of the road, goal value and traffic measures.

This also affects the selection of the environmental module.

 $\rightarrow$ Research work has to be done and more experiences are required.





# Thank you for your attention !

helmut.lorentz@lohmeyer.de