

Centro de Investigaciones Energéticas, Medioambientale y Tecnológicas

EVALUATION OF THE CHIMERE MODEL ESTIMATING WET DEPOSITION IN SPAIN

<u>Fernando Martín</u>, Marta G. Vivanco, Juan L. Garrido and Inmaculada Palomino Atmospheric Pollution Division. CIEMAT, Madrid, Spain

September 8-11, 2014

Introduction

- Few studies have been done to evaluate the ability of models to estimate pollutant deposition.
- Complex task because:
 - deposition is much more difficult to be accurately measured,
 - few stations.
- However, there are some studies about how models estimate the pollutant deposition (Simpson et al, 2006, Aas et al., 2010, Bessagnet et al, 2014 among others)

Objectives

- Evaluation of performance of CHIMERE estimating the wet deposition of sulphur and nitrogen (oxidized and reduced) on the Iberian Peninsula.
- Intercomparison with the EMEP model estimates.
- Main focus will be also on discussing seasonal and spatial variability.
- What is the main source of errors?

Methodology - Modeling scheme 2008

Methodology - Modeling

CHIMERE simulations for 2005-2008. Spatial resolutions:

- 2005-2007. European domain (0.5°x0.5° grid resolution), Iberian Peninsula domain (0.2°x0.2° resolution)
- 2008. European domain (0.2°x0.2° for 2008), Iberian Peninsula domain (0.1°x0.1° km²).
- Pollutant emission data from EMEP (50x50 km² resolution).
 - Disaggregated into hourly data in to the CHIMERE finer grid for the Iberian Peninsula using activity time profiles and land use data, respectively.
 - Spatial emission distribution and NMVOC speciation were performed as indicated in Vivanco et al. (2009).
- Wet deposition of sulfur and nitrogen (oxidized and reduced) on the Iberian Peninsula were estimated for the sites of the Spanish EMEP stations.

Methodology - Evaluation

- CHIMERE wet deposition estimates were compared with measured monthly data covering a period of 4 years (2005-2008).
- CHIMERE wet deposition estimates were also compared with EMEP estimates:
 - Annual atmospheric deposition data estimated for the period 2005–2008 with the EMEP model rv3.8.1 over Europe using a grid size of 50 km×50 km (Fagerli et al., 2011).
 - Meteorological data obtained from ECMWF-IFS Cycle36r1 (<u>http://www.ecmwf.int/research/ifsdocs</u> /)
 - Emissions from the EEA and CEIP Inventory Review of 2011.

September 8-11, 2014

Methodology – Evaluation – EMEP stations

- In Spain, the EMEP network
 10 monitoring stations
- From sea level to 1360 m a.s.l.
- Daily samples of precipitation collected with wet-only samplers in 9 of the monitoring stations for the period 2005–2008.
- Measured deposition data accumulated throughout each month estimated following the EMEP protocols.

42-40-38-36--10 2 -8

Spanish EMEP stations with deposition measurements

Methodology – Evaluation - Statistics

- Statistical metrics for time series of monthly data of wet deposition:
- Correlation coefficient (R),
- Mean fractional bias (MFB),
- Mean normalized factor bias (BNMBF) (Yu et al., 2006),

$$B_{\text{NMBF}} = \frac{\sum M_i}{\sum O_i} - 1 = \frac{\sum (M_i - O_i)}{\sum O_i} = \frac{\overline{M}}{\overline{O}} - 1 \text{, if } \overline{M} \ge \overline{O} \text{, and}$$
$$= (1 - \frac{\sum O_i}{\sum M_i}) = \frac{\sum (M_i - O_i)}{\sum M_i} = (1 - \frac{\overline{O}}{\overline{M}}), \text{ if } \overline{M} < \overline{O}$$

- Variant of *MFB*, $-\infty \leq BNMBF \leq +\infty$
- Avoid impact of very low values of observations (O_i)
- Factor of overprediction = BNMBF+1
- Factor of underprediction = 1-BNMBF
- Fraction of predictions within a factor of two of observations (FAC2),
- Normalized mean absolute error (NMAE)
- TARGET (Thunis et al., 2013) (RMSE/ standard deviation of observations)

September 8-11, 2014

Results – Monthly rainfall

- Meteorological models WRF and ECMWF-IFS linked to CHIMERE and EMEP, respectively.
- Both models predict well the monthly rainfall at most of the stations, specially the WRF model.

BNMBF values

Results – Monthly rainfall

- Metrics slightly worse in summer time and at the South-Eastern stations:
 - most of precipitation is irregular small-scale convective (thunderstorms)
 - much more difficult to simulate
- Errors in predicting rainfall seem not to be the main cause of the errors found for sulfur and nitrogen deposition.

September 8-11, 2014

R values for the summer period (June-September)

eficas, Medioamb

Results - Nitrogen - Statistics

 CHIMERE clearly underpredicts the wet deposition of reduced nitrogen (factor of 2.32) while the results for oxidized nitrogen are better than those of EMEP with a slight underprediction (factor of 1.14).

Metrics	CHIMERE REDUCED N	EMEP REDUCED N	CHIMERE OXIDIZED N	EMEP OXIDIZED N
R	0.44	0.48	0.54	0.56
MFB	-0.54	0.13	0.08	-0.1
BNMBF	-1.32	-0.02	-0.14	-0.24
FAC2	0.39	0.58	0.61	0.61
NMAE	0.67	0.6	0.56	0.53
Targets	1.09	0.92	0.85	0.85

Results - Nitrogen - Scatter Plots

Results – Error contributions

• The amount of wet-deposited pollutant (D) is the result of several factors representing the rainfall (P), pollutant dispersion (including chemistry) and pollutant deposition (DC) processes:

 $D = P \cdot DC$

 The relative error of deposition values (\(\D/D\)) will be the summation of the relative errors of P and DC:

$$\frac{\Delta D}{D} = \frac{\Delta P}{P} + \frac{\Delta DC}{DC}$$

- Approximately, *BNMFBD* = *BNMFBP* + *BNMFBDC*
 - $BNMFB_D$ = mean normalized factor bias of the deposition
 - $BNMFB_P$ = mean normalized factor bias of the rainfall
 - BNMFB_{DC} = mean normalized factor bias of the dispersion (including chemistry)-deposition formulations,

$BNMFB_{DC} = BNMFB_{D} - BNMFB_{P}$

• BNMFB_D and BNMFB_{DC} of the CHIMERE and EMEP estimates of wet deposition of oxidized and reduced nitrogen were computed for the 9 stations for 2005-2008.

September 8-11, 2014

BNMFB_D of the wet deposition of reduced (left) and oxidized (right) nitrogen estimates obtained with the CHIMERE (above) and EMEP (below) at the EMEP stations for 2005-2008.

géticas, Medioambie y Tecnológicas

BNMFB_{DC} of the wet deposition of reduced (left) and oxidized (right) nitrogen estimates obtained with the CHIMERE (above) and EMEP (below) at the EMEP stations for 2005-2008.

géticas, Medioambie y Tecnológicas

ERNO DE ECONOMIA Y COMPETITIVIDAD Centro de Investigaciones Energéficas, Mediaambientak y Tecnológicas

Results – Nitrogen – Error contributions

- Evident that underprediction of reduced nitrogen deposition estimated by CHIMERE is stronger when removing the effect of rainfall,
- Small changes are detected in the case of EMEP estimates.
- Concerning the oxidized nitrogen deposition, the highest impact is found for EMEP estimates, because the underprediction is extended to all the stations when removing the rainfall effect.
- It seems that the dispersion-chemistry-deposition formulations of EMEP model work slightly better for reduced nitrogen, and those of CHIMERE work better for oxidized nitrogen.

Results – Nitrogen – Seasonal

- Nitrogen wet deposition estimates with the EMEP model are better in summer
- Few differences in the case of the CHIMERE estimates of wet oxidized nitrogen deposition.
- There are some seasonal changes in the performance of CHIMERE for wet reduced nitrogen deposition for some stations but not in average in the whole domain.

September 8-11, 2014

September 8-11, 2014

Results – Sulphur – Statistics – Scatter Plots

- CHIMERE estimates seem to correlate better with observations than those from EMEP.
- CHIMERE underpredicts more than EMEP, but metrics for errors are worse for EMEP.

Results – Sulphur – Scatter Plots

September 8-11, 2014

 $BNMFB_D$ (left) and $BNMFB_{DC}$ (right) of wet deposition of sulphur estimates obtained with the CHIMERE and EMEP for 2005-2008.

Errors in the estimation of rainfall were not the main cause of the estimation errors of wet sulfur deposition estimates.

Conclusions

- CHIMERE and EMEP provide quite acceptable wet deposition estimates of nitrogen (oxidized and reduced) and sulphur but there are things to improve.
- CHIMERE underpredicts the wet deposition of reduced nitrogen while the results for oxidized nitrogen are better than those of EMEP.
- Dispersion-chemistry-deposition formulations of EMEP model work better for reduced nitrogen, and those of CHIMERE work better for oxidized nitrogen.
- Some seasonal differences if the performance for nitrogen deposition, specially for EMEP model.
- For sulphur, CHIMERE has better correlation and error metrics than EMEP, but CHIMERE underpredicts more than EMEP.
- Meteorological models predict well the monthly rainfall, specially the WRF model. Worse results are for southeast and summer.
- Errors in predicting rainfall seem not to be the main cause of the errors found for sulfur and nitrogen deposition.

MINISTERIO DE ECONOMIA Y COMPETITIVIDAD COMPETITIVIDAD

Thanks!

September 8-11, 2014