REGIONAL ASSESSMENT OF A REGIONAL BOTTOM-UP CATTLE AIR POLLUTANTS EMISSIONS INVENTORY AGAINST EUROPEAN EMISSIONS INVENTORIES

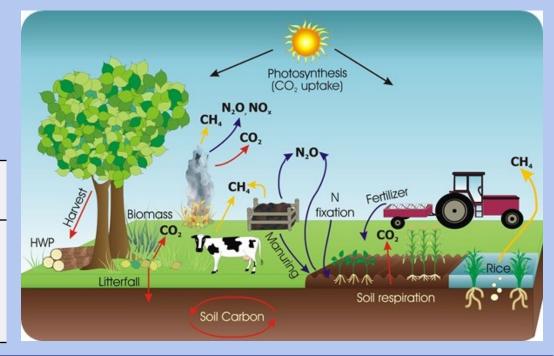
M. Morán, J.A. González, M. Dios

Department of Chemical Engineering University of Santiago de Compostela (Spain)

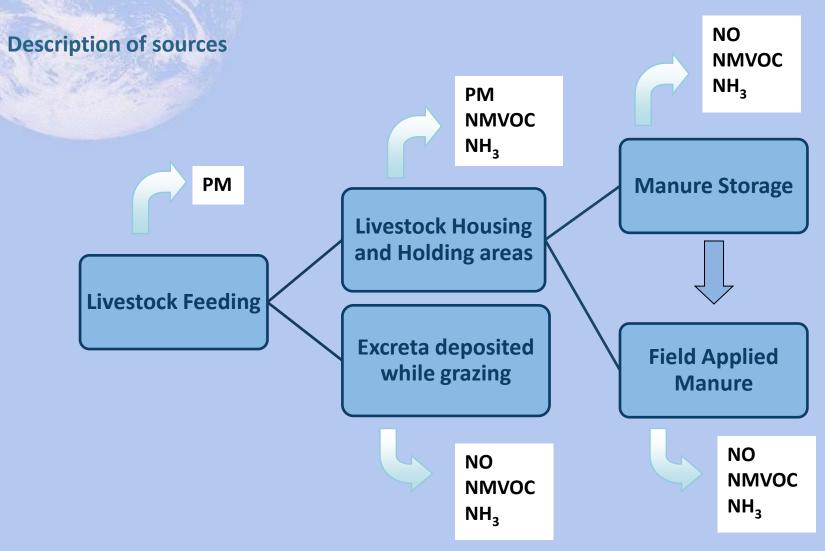
Overview

- Methodology and EFs estimation
- GHGs emissions estimation
 - ✓ CH₄ emission from enteric fermentation
 ✓ CH₄ emission from manure management
 ✓ N₂O emission from manure management
- Ammonia and NMVOC emissions
- Geographical distribution
- Comparison to standard emissions inventories
- Concluding remarks

Introduction

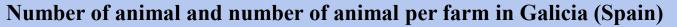

Cattle sector

In Spain, livestock contributes over 35% of CH_4 emissions, of which 60% are from cattle

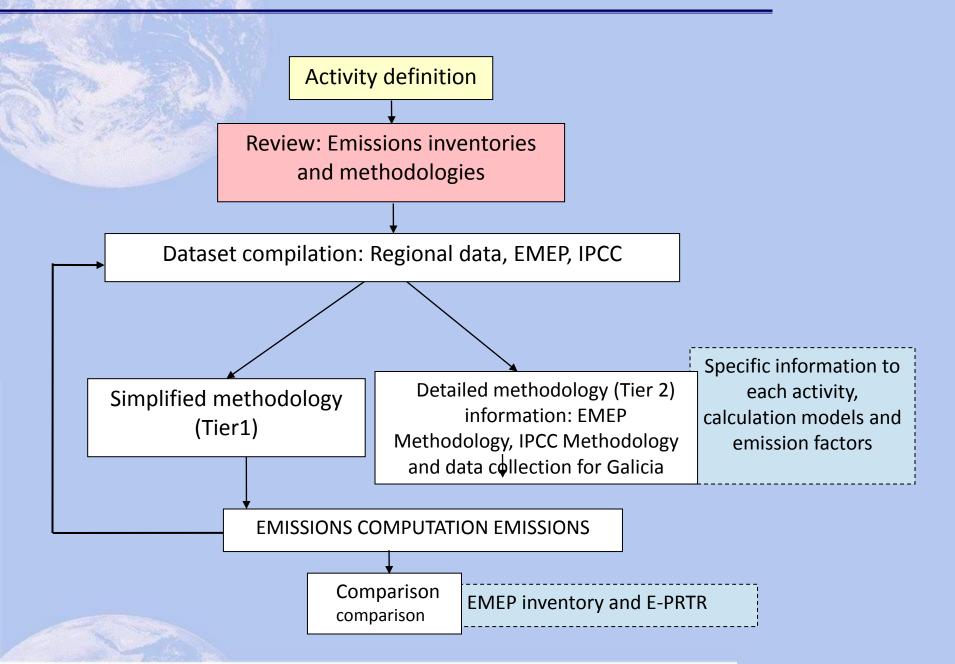

Emissions of pollutants in the cattle sector

Greenhouse Gases	Contribution		
(GHGs)	of Livestock		
Carbon Dioxide (CO ₂)	9%		
Methane (CH ₄)	35 - 40%		
Nitrous oxide (N ₂ O)	65%		
Ammonia (NH ₃)	64%		

Overview


Animal husbandry and manure management

Study region - Galicia



Atlantic coastal region in the NW of Iberian Peninsula: Half of Spanish cattle are located in Galicia

Methodology and EFs estimation

GHGs emissions estimation

GHGs emissions (IPCC, 2006) are calculated by multiplying the number of animals (N) in each category (i) by an appropriate emission factor (EF).

Emission (t/year) =
$$\sum EF \cdot \frac{N_i}{1000}$$

Tier 1 EFs are based in constant values

Tier 2 *EFs* depend on the different direct and indirect processes involved in a typical cattle farm, that is, enteric fermentation and manure management and other specific parameters are required: the animal type, the animal productivity, the quality of diet, and the management conditions; particularly, in order to support a more accurate food intake value applied to the estimation of methane production resulting from enteric fermentation.

Ammonia and NMVOC emissions estimation

NH₃ and NMVOC emissions were calculated using the methodology and algorithm provided by the EMEP/CORINAIR Atmospheric Emission Inventory Guidebook

Mass-flow approach was developed to quantify ammonia

LEVEL 2

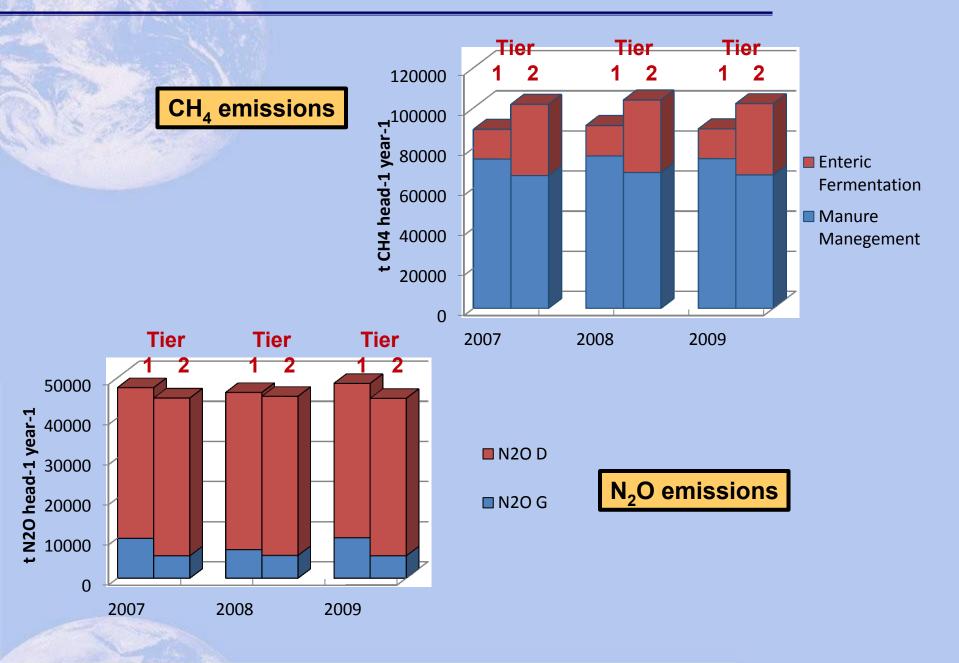
$$E_{MMS-NO} = \left(E_{storage_{NO_{slurry}}} + E_{storage_{NO_{solid}}}\right) \cdot 30/14$$

$$\begin{split} E_{MMS-NH3} &= (E_{yard} + E_{build_{slurry}} + E_{build_{solid}} + E_{storage_{NH3}_{solid}} + E_{storage_{NH3}_{slurry}} \\ &+ E_{applic_{\Box slurry}} + E_{applic_{solid}} \cdot 17/14 \end{split}$$

NMVOC emissions are calculated by using a single default *EF* value (Hobbs et al., 2004)

Results – GHGs (2009)

CH₄ emissions

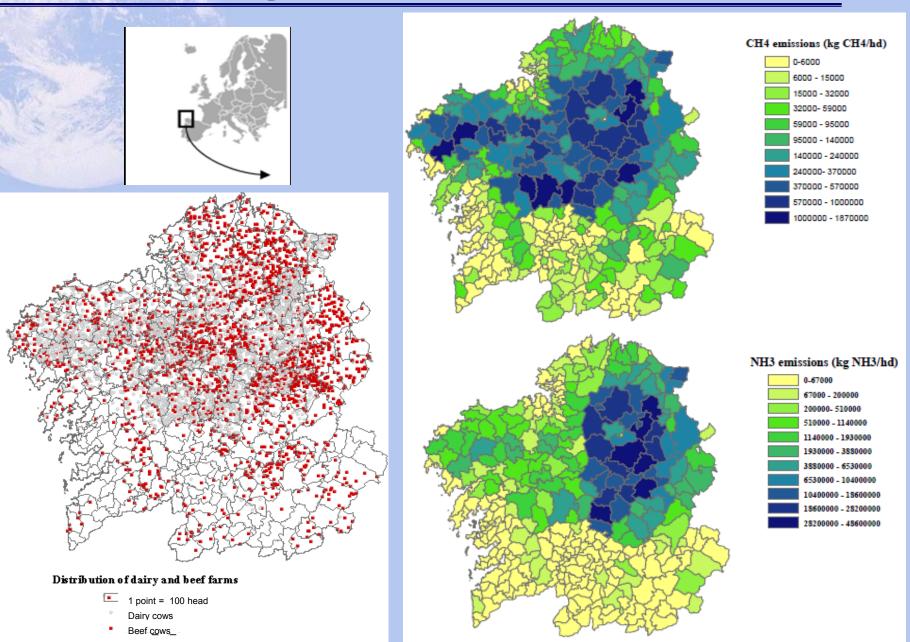

1 1. 19	Tier 1			Tier 2		
Livestock category	EF _{ef}	EF _{mm}	Emissions	EF _{ef}	EF _{mm}	Emissions
	kgCH ₄	kgCH ₄	$Gg CH_4$	kgCH ₄	kgCH ₄	$Gg CH_4$
	hd ⁻¹ yr ⁻¹	hd ⁻¹ yr ⁻¹	yr-1	hd-1yr-1	hd ⁻¹ yr ⁻¹	yr⁻¹
Mature	109	27	50.69	82.65	45.59	47.80
Dairy Cow Other						
Mature	57	8	22.28	65.18	28.99	32.29
Cattle	01	J		00.10	20:00	02.20
Growing	57	8	14.8	52.75	33.94	22.04
Cattle					00.01	
TOTAL			89.50			102.12

Results – GHGs (2009)

N ₂ O emissions		Tier 1	Tier 2
	Livestock category	Nint(T)	Nint (T)
		kg N hd ⁻¹ yr ⁻¹	kg N hd ⁻¹ yr ⁻¹
and a start of the start of the	Mature Dairy Cow	79.72	69.62
	Other Mature Cattle	84.65	54.01
	Growing Cattle	22.89	65.56

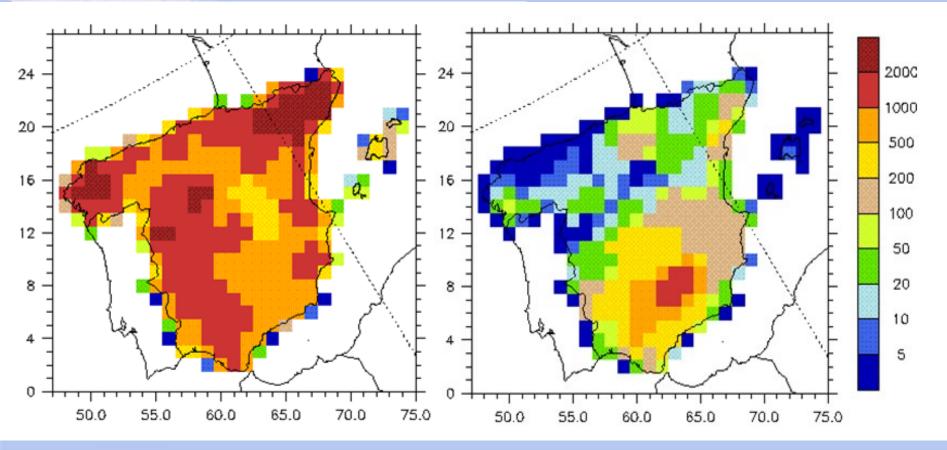
	Tier 1			Tier 2		
Livestock category	Emissions	issions EF mm		Emissions	EF mm	
	Gg N₂O yr⁻¹	kg N₂O hd⁻¹yr⁻¹		Gg N₂O yr⁻¹	kg N₂O hd⁻¹yr⁻¹	
Mature Dairy Cow	8.25	22.13		0.969	2.6	
Other Mature Cattle	33.56	97.90		17.22	50.2	
Growing Cattle	6.73	26.47		15.50	61.0	
TOTAL	48.54			44.82		

Results - GHGs annual series

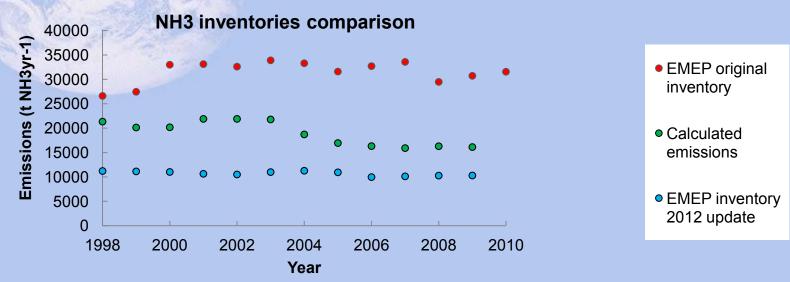


Results – Tropospheric gases (2009)

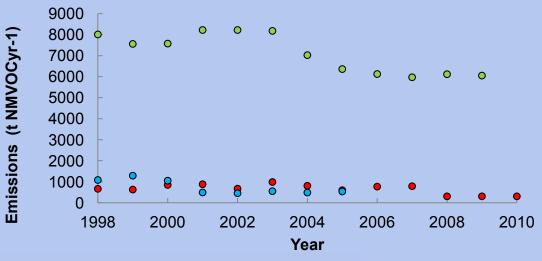
NMVOC and NH₃ emissions


NFR	NFR Name	EF (kg hd ⁻¹ yr ⁻¹) for NMVOC	NMVOC emissions (Gg NMVOC yr ⁻¹)	EF (kg hd ⁻¹ yr ⁻¹) for NH ₃	NH ₃ emissions (Gg NH ₃ yr ⁻¹) Tier 1	NH ₃ emissions (Gg NH ₃ yr ⁻¹) Tier 2
4.B.01.a	Dairy cattle	13.6	5.07	39.3	14.6	13.0
4.B.01.d	Non-dairy cattle	7.4	4.42	13.4	8.0	6.47
	TOTAL		9.50		22.65	19.50

Results - Geographical distribution (2009)


Comparison to standard inventories (2009)

EMEP emissions of NH₃ and NMVOC in tons (t) in 2009 S10 – Agriculture sector (CEIP, 2012) NH₃ NMVOC



Comparison to std. emissions inventories

Comparison of calculated and EMEP S10 sector NH₃ emissions at Galicia region, considering both original and updated EMEP (June-2012) inventories.

NMVOC Inventories comparison

Comparison to standard inventories (2009)

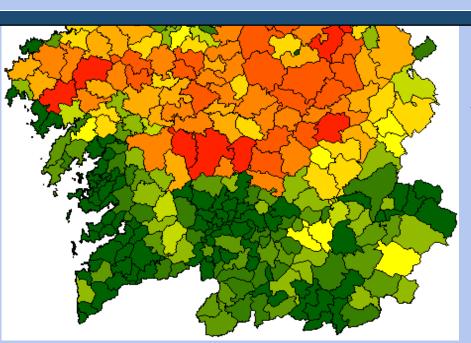
Comparison of E-PRTR emissions (Cathegory 7) with those calculated for cattle in Galicia for the year 2009

	E DDTD amiggiong	Calculated emissions		
	E-PRTR emissions	(Tier 2)		
	(t•yr-1)	(t•yr-1)		
CH_4	108	102120		
NH ₃	2290.9	19500		

Conclusions

- Cattle activities produce significant both GHGs and tropospheric pollutants emissions
- CH₄ emission estimated using Tier 2 (IPCC, 2006) is higher than using Tier 1 (IPCC, 2006). Tier 2 results show that more CH₄ livestock emissions come from enteric fermentation than using Tier 1.
- About N₂O emissions, direct contribution (89%) is the largest component
- Considering GHGs emissions, Global Warming Potential (GWP) from CH_4 and N_2O cattle emissions represents 56% of the total GWP in this region

Conclusions


- Compared to EMEP inventory, NH₃ emissions value is twice the updated S10
 EMEP sector emissions, even though S10 sector not only includes cattle
- Differences are even higher when NMVOC emissions are considered, with extremely low S10 EMEP values respect to the calculated NMVOC emissions
- Cattle activities must be included in E-PRTR

Future work

- An extension of these results to Europe depends on the availability and accuracy of data input, specially for Tier 2 method and NH3 emissions calculation
- A sensitivity analysis of these emissions estimation methods to the different data input should be useful to define the uncertainties associated to these emissions. Also, in order to reduce the required data input
- Currently, we are in collaboration with the GEMAC group, University of Aveiro, to extend these cattle emissions calculations and, also, new S10 EMEP emissions estimations, to Portugal and Galicia: In order to estimate the impact of those emissions in the ozone episodes observed in rural areas

REGIONAL ASSESSMENT OF A REGIONAL BOTTOM-UP CATTLE AIR POLLUTANTS EMISSIONS INVENTORY AGAINST EUROPEAN EMISSIONS INVENTORIES

M. Morán <u>J.A. González</u> M. Dios

ja.souto@usc.es

