Sensitivity Analysis of Individual VOC Species to Reduction of Atmospheric Ozone

Kouhei Yamamoto¹⁾, Kazuo Nakajima¹⁾, and Hikari Shimadera²⁾ 1) Graduate School of Energy Science, Kyoto Univ., Japan 2) Center for Environmental Innovation Design for Sustainability, Osaka Univ., Japan

Outline

- The sensitivities of anthropogenic VOCs to the reduction of atmospheric ozone in Kinki area, Japan were investigated by using CMAQv5.0.1 with WRFv3.4.1.
- Emission inventories of precursors were introduced from JATOP (Japan AuTo-Oil Program), and MEGANv2.04 for biogenic sources.
- SAPRC-99 model was adopted in CMAQ for gas phase chemistry.
- The sensitivity analysis of VOCs to ozone reduction in the child domain was conducted by estimating the change rates (CRs) of ozone concentrations in case of using 20 % reduced emission of each VOC species.
- Seven species of VOCs such as ALK3, ALK4, ARO1, ARO2, OLE2, ETHENE, HCHO were selected for sensitivity analysis, and the CR of each grid was sorted by values of each VOC concentration divided by NOx concentration.
- As remarkable decreases were shown in case of the reduction of former five species, the sum of five VOCs divided by NOx was proposed as a photochemical index for ozone reduction.
- The CRs under various ranges of ozone peak concentrations were estimated as a function of this developed index, and in the case that the index was below 0.2, the reduction rates were more prominent.

VOCs emission in

Kinki area

Model Domain

Pre-estimation of ozone productivity P of VOCs

VOCs in SAPRC99

SAPRC99	Description	Ν
ALK1	Alkanes that react with OH, $kOH < 5 \times 10^2 / (ppm \cdot min)$	10
ALK2	Same as ALK1, but kOH = $5 \times 10^2 \sim 2.5 \times 10^3$ (ppm · min)	16
ALK3	Same as ALK1, but kOH = $2.5 \times 10^3 \sim 5 \times 10^3$ (ppm · min)	23
ALK4	Same as ALK1, but kOH = $5 \times 10^3 \sim 1 \times 10^4$ (ppm · min)	32
ALK5	Same as ALK1, but $kOH > 1 \times 10^4$ (ppm min)	286
ARO1	Aromatics with kOH $< 2 \times 10^4$ (ppm min)	16
ARO2	Aromatics with kOH > 2×10^4 (ppm • min)	43
IPROD	Lumped isoprene product species	2
MACR	Methacrolein	2
MEK	Ketones and other oxygenated products with $kOH > 5 \times 10^{-12}$ (ppm • min)	9
OLE1	Alkenes with kOH $< 7 \times 10^4$ (ppm • min)	38
OLE2	Alkenes with kOH > 7×10^4 (ppm min)	90
PROD2	same as MEK, but kOH > 5×10^{-12} (ppm · min)	23
RCHO	Lumped C3+ aldehyde	14
TERP	Terpenes	6
ACET	Acetone	1
BACL	Biacetyl	1
BENZENE	Benzene	1
ССНО	Acetaldehyde	1
CRES	Cresols	1
ETHENE	Ethane	1
GLY	Glyoxal	1
HCHO	Formaldehyde	1
HCOOH	Formic acid	1
ISOPRENE	Isoprene	1
MEOH	Methanol	1
MGLY	Methyl glyoxal	1
MVK	Methyl vinyl ketone	1
PHEN	Phenol	1

CMAQ performance

-Observed

-Calculated

Osaka

Linearity of individual VOC to ozone reduction

Sensitivity analysis of individual VOC to CR

Change rate of ozone concentration [*CR*] $CR(\%) = 100 \times (C_{reduced} - C_{original}) / C_{original}$

Nagoya

Comparison of summed CR in individually reduced with CR in simultaneously reduced

CR and the developed Index

Developed Index = ${[ALK3] + [ALK4] + [ARO1] + [ARO2] + [OLE2]}$

([ALK3]+[ALK4]+[ARO1]+[ARO2]+[OLE2]) / [NOx] 0.8 CRs (%) /[NOx]

-2.5

Availability of the index under various ranges of peak concentration

Distribution of the index and relationship with CR

This work was supported by The Kyoto University Foundation

Index

