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1.  Introduction 

SWIFT / Micro-SWIFT are routinely used in nested / parallel mode 

SWIFT / Micro SWIFT is a mass consistent interpolator over complex terrain. Micro 

SWIFT contains Rockle type modeling to take into account buildings. 

 

SWIFT / Micro SWIFT capability can be used on a downscaling mode, called nested 

simulation. 

 

Parallel version of MSS has also been developed to allow for operational handling of 

large build-up areas such as Paris . 
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1.  Introduction 

The aim is to take into account more physic but keeping the low CPU cost 
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One particular application is parallel/nested simulations to handle malevolent / 

terrorist activities that may result in the atmospheric dispersion of noxious gases or 

particles in urban environment. Precise pressure diagnostic on very complex shape 

buildings may be needed for infiltration calculations. 

 

To get more precise flow description around complex buildings, momentum 

constraint has been added to SWIFT / Micro-SWIFT. 

 

The aim is to: 

 Introduce more physic, 

 Without increasing too much the computational cost 
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2.   Equations solved 

Traditional incompressible RANS equations are used to derive a stationary state 
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Equations are: 

 - Momentum: 

 ∂t Ui = - ∂j ( Ui Uj ) – 1/ ρ ∂i P 

   + ∂j [ ν  ( ∂i Uj + ∂j Ui ) + Rij ) ] 

 - Mass consistency: 

 ∂i Ui = 0 

With: 

 U the wind 

 P the pressure 

 ρ the density, integrated in pressure from now on 

 ν the kinematic viscosity 

 R the Reynolds stress tensor 
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2.   Turbulence closure 

Turbulence closure is performed using simple mixing length 
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A mixing length is defined as: 

 lmix = κ db 

The turbulent viscosity νt is derived through: 

 νt = lmix
2 √ ( Sij Sij ) 

With: 

 S the deformation tensor: Sij = 1/2 ( ∂i Uj + ∂j Ui ) 

 κ the von Karman constant 

 db the distance to solid boundaries 

 

Hence the momentum equation becomes: 

 ∂t Ui = - ∂j ( Ui Uj ) – ∂i P  

   + ∂j [ (ν + νt) ( ∂i Uj + ∂j Ui ) ] 



9 

2.   Incompressibility 

Incompressibility uses artificial compressibility approach 
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Mass consistency: 

 

 ∂i Ui = 0 

 

Is substituted by a time varying equation for pressure: 

 

 1 / ß ∂  P = - ∂i Ui 

 

Since we are solving for steady state, the artificial compressibility reduces to 

traditional incompressibility once convergence is reached. 
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2.   Discretization 

A regular horizontal mesh with terrain following coordinates is used 
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Terrain following coordinates: 

 X= x 

 Y= y 

 s = ( H – z ) / (H – zg ) with H the domain top 

    and zg the ground 

 

Time discretization: second order explicit Adams-Bashforth scheme 

 

Space discretization: 

 Advection part: upwind scheme 

 Diffusion part: second order centered 
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3.   Academic cube test case 

0.7 million nodes mesh on an isolated cube solved in 16mn 
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Configuration: 

 20m cube 

 Domain: 191 x 161 x 23 (~ 0.7M nodes), metric resolution in horizontal, domain 

top at 60m 

 Wind: academic log profile with 

1.5m/s at 10m 

 Micro-SWIFT wind field used as 

initial guess 

 

With 2000 iterations of wind: 

 Residual: 5.E-5 

 16mn on single Intel Core i5, 

2.6GHz laptop 

 

 

Wind  field intensity and 

streamlines at the cube 

mid height 



Configuration: 

 Rectangular obstacle: 20m x 30m x 

25m 

 Inflow wind speed at building top 

height: 4m/s 

 

Data obtained for Hamburg University 

wind tunnel database 

 

Mesh: 

 2m resolution 

 190 x 101 x 27 (~0.5 M) nodes 
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3.   CEDVAL database, cube A1 (1/3)  

Comparisons to wind tunnel experiments have also been performed 
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Experimental wind field at 7m height 

(top) and vertical median plane 

(bottom) 



Computation takes 14mn on Intel Xeon 5660 2,8GHz 

 

Downwind vortex extension tends to be over estimated 
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3.   CEDVAL database, cube A1 (2/3)  

SWIFT-Momentum tends to over estimate vortex extension 
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Comparison of 

experimental (top) and 

model (bottom) wind field at 

7m height 



Comparison to Mercure k-eps CFD, Micro-SWIFT and experiment. 

SWIFT-M gives an intermediate solution between Mercure and Micro-SWIFT  
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3.   CEDVAL database, cube A1 (3/3)  

SWIFT-M gives results closer to k-eps CFD 
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Michelstadt: wind tunnel academic city center defined in the COST framework 

Mesh: 3m resolution in horizontal, 533 x 309 x 26 (~ 4.2 M) nodes 
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3.   Michelstadt wind tunnel (1/2) 

Preliminary testing has been performed on Michelstadt wind tunnel experiment both 

for CPU estimation and wind flow quality 
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Buildings top  view  

Michelstadt wind tunnel setting 



Preliminary results 

 

CPU cost: 

 SWIFT-M: 58 mn on a 

single Intel Xeon 5660 

2.8 GHz processor  

 Code_SATURNE:  ~ 3h on 

24 Intel Xeon 5680  3.3 

GHz processors 

 

Horizontal slice at 6m 
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3.   Michelstadt wind tunnel (2/2) 

More flow friction leads to slower wind 

speed in streets 
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SWIFT-M 

Code_SATURNE 
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4.   Conclusions 

SWIFT-M has low CPU constraints with more physic 
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 SWIFT-M allows us to take into account momentum constraint with cheap CPU 

overhead. 

 Preliminary testing shows satisfactory agreement with full k-eps CFD on simple 

test cases. 

 Next steps: 

 Consolidate validations 

 

 Achieve full parallel integration in SWIFT parallel framework 

50mn SWIFT-M 

computation over  whole 

Paris area with domain 

tiling 
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4.   Conclusions 
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Thank you for your attention 

Wind speed (m/s) SWIFT-M computation 

over  whole Paris area 

with domain tiling: 

Details of wind field 

near Tour Eiffel 
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