

16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Rurposes 8-11 Deptember 2014, Narna, Bulgaria

Multi-scale Modelling of Chicago Urban Heat Island and Climate-Change Impacts

Patrick Conry, Ashish Sharma, Mark Potosnak, Jessica Hellmann, and H.J.S. Fernando

Chicago Heat Island

- July 1995 heat wave in Chicago
 - Deadliest in American history 465 deaths
 - Record breaking 41.1 °C at Midway Airport
- Chicago Climate Action Plan
 - Adaptation for future conditions
- Need a tool that can link climate change to UHI
 - Must capture all the relevant scales of UHI

Outline

- 1. Multi-scale modelling approach
- 2. Model validation
- 3. Climate-change applications
 - a) Lake breeze
 - b) Pedestrian comfort
 - c) Pollutant dispersion
 - d) Building energy
- 4. Conclusions

MULTI-SCALE MODELLING

- Statistical downscaling
 - Faces limitations past observations and regime shifts
- Dynamical downscaling
 - Requires multi-model chain
 - Global to regional to city to micro-scales
 - finest scales required for pedestrians and buildings
 - Thus far efforts have only covered portion of this chain
- We seek to bridge all these scales

Multi-scale Modelling

2.5 degrees ⇒ 9 km ⇒ 3 km ⇒ 1 km ⇒ 333 m ⇒ 2 m

Global Community Atmospheric Model (CAM) of Climate System Model (CCSM5)

NOTRE DAN

Mesoscale Weather Research and Forecasting (WRF) model coupled with urban parameterization scheme Micro-scale ENVI-met

UNIVERSITY OF NOTRE DAME

畵

- ENVI-met v3.1 developed by Michael Bruse (Bruse and Fleer 1998)
- 3D Reynolds Averaged Navier-Stokes model
 - Boussinesq approximation
 - k- ε 1.5 order turbulence closure scheme
- 1D model supplies lateral/upper boundary conditions for 3D model
 - Only initial conditions fed by user; thereafter marches forward in time without further nudging

MODEL VALIDATION

Mesoscale Model Performance

WRF performance statistics at 8 urban stations

Station	lat, lon (°N, °W)	2-m temp (°C)		10-m ws (m s ⁻¹)	
identifierª		RMSE	MAE	RMSE	MAE
MDW	41.7841, 87.7551	1.27	1.04	1.38	1.16
ORD	41.9875, 87.9319	1.78	1.45	1.22	0.99
AR820	41.9600, 87.7995	2.34	2.00	1.22	1.03
D6362	41.9483, 87.6586	1.36	1.06	1.33	1.05
D7813	41.8238, 87.8485	2.46	2.06	1.06	0.85
D8777	41.9333, 87.6725	1.25	1.02	1.53	1.07
E3114	41.8818, 87.6633	1.41	1.09	1.19	0.90
IL010	41.8325, 87.6949	1.53	1.21	1.57	0.85

Field Experiment

- Field campaign conducted July 24-August 21, 2013 at DePaul University
- Obtain reliable dataset for validation of ENVI-met in our model chain
- Pictured is one tower on McGowan South (MS) building's rooftop

Munroe courtyard (MC)

990 Fullerton building (FB)
McGowan South (MS)
ENVI-met domain

Coupled Model Validation

RMSE (°C) MAE (°C) d Station August 17-18, 2013 Obs. WRF Obs. WRF Obs. WRF Two sets of initial conditions MS1 1.94 1.15 1.83 0.86 .784 .909 MC1 1.20 0.65 1.04 0.53 .901 .971 26 Observations 0 00 0 25 Obs-initialized 0 24 Temperature (C) − 22 0 WRF-initialized 0 0 °°°°°° ° 0 20 20 22 00 02 04 06 08 16 18 20 22 00 02 04 06 08 10 12 14 16 18 26 **Difference** measures 0 24 Temperature (C) Root mean square error (RMSE) Mean average error (MAE) 0 0 Index of agreement (d) 18 values approaching 1.0 = good model performance 18 20 22 00 02 04 06 08 10 12 14 16 18 20 22 00 02 04 10 12 14 16 Time (hr)

CLIMATE-CHANGE APPLICATIONS

Climate-Change Applications

- CAM output averaged over years 2076 to 2081 fed into WRF
- Average lake-breeze days over entire month of August to get an average future August lake-breeze day
 - provides initial conditions to ENVI-met model
- Take 'typical' present-day August lake-breeze conditions as August 18, 2013
 - Based on statistical analysis of meteorological records
- ENVI-met can give finescale results for applications such as pedestrian comfort and building energy consumption

Lake Breeze

• Used criteria from Laird et al. (2001) to count lake breeze occurrences using WRF and observations at A , B, and C on August 15-19, 2013

		Observed lake breeze		
	Event	Lake breeze	No lake breeze	
WRF-urban estimated	Lake breeze	10	1	
lake breeze	No lake breeze	0	4	

• 100% probability of detection; 20% probability of false detection; 0.07 false alarm rate

- For thermal comfort mean radiant temperature (MRT) is highly influential
- Use Predicted Mean Vote (PMV) as thermal comfort index (Fangers 1970, Jendritzky 1990) – depends on temperature, MRT, humidity, and wind speed but MRT clearly dominates
- On average, 92% of people have discomfort with future outdoor conditions

- Pollution from traffic emissions also has major impact on pedestrian comfort
- Particle dispersion in ENVI-met (Bruse 2007)
 - ENVI-met uses standard application advection-diffusion equation
 - Accounts for particle deposition on vegetation and horizontal surfaces
 - Can create sources of particulate emission in domain
- We follow Vos et al. (2012) to simulate traffic emissions of elemental carbon (EC)

Building Energy

• In Conry et al. (2014), we develop simple building energy model

CONCLUSIONS

Conclusions

- Multi-model chain utilizing dynamical downscaling developed as comprehensive tool for studying UHI and climate change
- Coupling mesoscale and microscale can improve performance at microscales
- Exacerbated UHI and air temperature outweigh slightly strengthened lake breeze, seriously threatening sustainability of Chicago

Acknowledgements

- This research was funded by NSF Grant No. 0934592, Notre Dame Environmental Change Initiative, and the Sustainability Office of the City of Chicago
- Special thanks to DePaul University's Facility Operations for access experimental locations
- Special thanks also to Scott Coppersmith and Raffaele Quarta for aid during experimental campaign
- Finally, the authors gratefully acknowledge Edward Bensman at Notre Dame's Engineering and Science Computing for providing computational resources

Thank you

Works Cited

- Bruse, M., 2007: Particle filtering capacity of urban vegetation: A microscale numerical approach. *Berliner Geographische Arbeiten*, **109**, 61-70.
- Bruse, M. and H. Fleer, 1998: Simulating surface-plant-air interactions inside urban environment with a three dimensional numerical model. *Environ. Modell. Softw.*, **13**, 373-384.
- Conry, P., A. Sharma, H. J. S. Fernando, M. Potosnak, L. S. Leo, and J. Hellmann, 2014: Multi-scale Simulations of Climate-Change Influence on Chicago Heat Island. *Proc. of the 4th Joint US-European Fluids Engineering Division Summer Meeting*, Chicago, IL, Amer. Soc. Mechanical Engineers, FEDSM2014-21581.
- Fangers, P. O., 1970: *Thermal Comfort: Analysis and Applications in Environmental Engineering*. Danish Technical Press, 244 pp.
- Jendritzky, G., 1990: Regional Bio-climatological Assesment Procedure Using Mesoscale Bioclimate Maps as Example (in German), *Methodik zur räumlichen Bewertung der thermischen Komponente im Bioklima des Menschen: Fortgeschriebenes Klima-Michel-Modell*, Schirmer, H., W. Schmidt-Kessen, G. Jendritzky, and G. Menz, Akademie für Raumforschung und Landesplanung, 7-69.
- Vos, P. E. J., B. Maiheu, J. Vankerkom, and S. Janssen, 2012: Improving local air quality in cities: To tree or not to tree. *Environ. Pollut.*, **183**, 113-122.