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Abstract:
Carbon dioxide emissions, accounting for more than 70% of global anthropogenic greenhouse gas releases, are

the main driver of climate change. Current emissions estimates, which are needed to guide reduction policies, rely on
statistical data of energy consumption including self-reporting from emitters and are subject to important uncertainties.
In order to assess these emissions in an independent, timely and accurate manner, the Copernicus CoCO2 project aims to
build a prototype system for a CO2 emission monitoring service exploiting atmospheric CO2 measurements. As part of
this project, our goal is to build an atmospheric transport modelling inverse system to improve the quantification of CO2
sources of large magnitude at urban scale based on the spaceborne imagery of the CO2 atmospheric plumes from these
sources. The reconstruction of such sources depends on the detection of the associated plumes in the satellite images
of the vertically averaged CO2 column concentrations (XCO2), which represents a significant challenge. Indeed, the
signal of CO2 plumes induced by point-source emissions is intrinsically difficult to detect since it rarely exceeds values
of a few ppm and is perturbed by variable regional CO2 background signals and noise or error patterns in XCO2 images
due to instrument and retrieval algorithms.

To tackle the problem of CO2 plume detection and inversion, we investigate the potential of deep learning methods.
Neural networks are trained on hourly simulated XCO2 fields in the regions of Paris, Berlin, and several power plants,
consisting of the plume from the city or the power plant and of other biogenic and anthropogenic fluxes. Convolutional
neural networks are trained to evaluate the presence and the contour of the CO2 plume in an image and to reconstruct
the corresponding emissions. In 75% of the estimates, the relative error between predictions and actual emissions is
less than 0.2.
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Introduction
Currently, countries’ progress in reducing their greenhouse gas (GHG) emissions is monitored through
regular national inventories, based on self-reported energy consumption statistics. Independent assessment
of countries’ emissions would support these inventories: estimates based on spaceborne measurements can
enable this verification and monitoring of countries’ GHG releases. Within the Copernicus programme, the
CO2 Monitoring and Verification Service (CO2MVS) aims to develop an operational emission monitoring
system (Janssens-Maenhout et al., 2020) with the help of the CO2M satellite mission. Satellites can provide
images of vertical integrated CO2 (XCO2) characterising the CO2 plumes from point-sources: cities or
power plants. These signals can be used to estimate the associated emissions. As part of the CoCO2
project, which aims to elaborate a prototype CO2MVS, we develop supervised deep learning methods able
to detect anthropogenic plumes and estimate the associated emissions. The neural networks receive pairs of
inputs (simulated satellite images) and labels (the target to be learned, e.g. emissions) and learn the features
of the inputs that correspond to the associated targets. We use convolutional neural networks (CNN) which
are able to extract spatial features from the image by applying successive convolution filters, with the aim of
recognising characteristics associated with anthropogenic plumes. Our models are trained with simulated
fields of average CO2 column concentrations (XCO2) consisting of plumes of various cities and power



plants, as well as other biogenic and anthropogenic fluxes.

Simulation of the satellite XCO2 images
The detection and inversion of CO2 plumes in satellite images is a challenge with many obstacles (Kuhlmann
et al., 2019):

• the integrity of the image which may be affected due to insufficient coverage of the plume by the
satellite or the presence of clouds preventing the satellite from observing a large part of the plume;

• a low ratio between:

– the plume signal, dependent on the intensity of the emission source and on the meteorological
conditions determining its dilution and dispersion,

– and the background interference, whose variability depends on the single sounding precision of
the satellite instrument and the anthropogenic and biospheric fluxes in the vicinity of the target,
affected by the meteorology.

The plume signal is often lower than the observation error and the background variability.

In this study, we focus on the second problem, assuming that the integrity of the image is intact. The XCO2
fields used for this study consist of simulations by atmospheric transport models, composed of the anthro-
pogenic plume from the point-source emitter (city or power plant) and other biogenic and anthropogenic
fluxes (the background). Two different atmospheric dispersion models are used to compute the fields: sim-
ulations in the region of Paris by WRF-Chem V3.9.1 are based on the configuration of Lian et al. (2021)
while simulations in the region of Berlin and the power plants are based on COSMO-GHG and issued from
the SMARTCARB project (Kuhlmann et al., 2019). Paris data consist of 3-months simulations on a nested
domain of various resolutions (the innermost domain covering the Île-de-France being at 1km resolution),
while SMARTCARB simulations consist of 1-year data with a resolution of 0.01◦. The full SMARTCARB
domain covers ∼ 700km2 and is centered around Berlin. A random gaussian noise of 1ppm is added to
the simulated XCO2 fields to represent the satellite instrument noise. The construction of a XCO2 field is
shown on Fig. 1.

Figure 1: Construction of a simulated XCO2 field observed by the satellite with a) the anthropogenic XCO2 plume,
b) the plume added to the background noise (biogenic + other anthropogenic fluxes), and c) the addition of the satellite
instrument noise.

Detection: segmentation of a plume
Plume detection, or segmentation, is the detection of the outline of a plume in a given image, or, equiv-
alently, the detection of the pixels compounding the plume. To perform this task, a convolutional neural
network is used which takes as input a given XCO2 field and gives a probability map as output. The shape of
the input and output are equal and each pixel in the output represents the probability that the concentration



of the pixel partially originates from the plume. To tackle this image-to-image problem, we use a model
based on the U-net architecture (Ronneberger et al., 2015), an encoder-decoder composed of a contracting
phase (increasing feature information) and an expansive phase (increasing the resolution back to its original
shape). This type of architecture allows the network to learn from information captured on the entire image.

On Fig. 2, two applications of the U-net are provided on an satellite image of a city (left) and a power
plant (right), unseen by the model during the training phase. The segmented probability maps represent
typical results obtained by the model. For both of these very dissimilar plumes, a good fit can be observed
between the segmented probability maps and the true concentration fields: for a threshold equal to 0.5
(pixels with probabilities higher than 0.5 are considered as pixels compounding the plume), the IoU scores
are higher than 0.9 in both cases.

Inversion: emissions estimation
The inversion problem is the problem of retrieving the emissions associated to a plume in a given XCO2
field image. A convolutional neural network is used, processing as input a given XCO2 field and resulting
in a scalar output representing the emission rate of CO2 in Mt.year−1 on the last hour. We thus assume that
a plume observed on the image depends only on the emissions of the last few hours and that the emissions
vary little in time. On the power plants and cities considered, typical emission rates range between 10 and
70Mt.year−1. The neural network used for this regression problem is built on the EfficientNetB0 (Tan and
Le, 2020), a classification neural network made of inverted residual blocks. The loss function chosen is a
mean squared logarithmic loss, to address proportional errors between the predicted and true emission rates.
Fig. 3 presents two applications of the trained EfficientNetB0 on XCO2 fields, unseen during the training
phase. A histogram of the relative error between true and predicted emission rates by the CNN is provided
in Fig. 4. For 75% of the estimations, relative error is below 0.2. However, a typical regression problem is
encountered: high emissions are slightly underestimated and low emissions are slightly overestimated. The
worst estimations are the result of this problem.
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Figure 2: Two examples of the U-net application. The first row corresponds to two independent (and unseen by the
model during the training phase) XCO2 simulated satellite image inputs in ppmv, the second row corresponds to the
corresponding plumes, or truths, targets of the U-net in ppmv, and the third row corresponds to the predictions of the
U-net as maps of probability. These two examples are representative of the average results of the model: the pixel-
weighted binary cross entropy errors of the left and right example are equal to 0.25 and 0.04, respectively, while the
average error on all unseen data is 0.12.



Figure 3: Two examples of the inversion EfficientNetB0 application. The left images correspond to two independent
(and unseen by the model during the training phase) XCO2 simulated satellite image inputs in ppmv. The estimated
and real emissions are given on the right of the images.



Figure 4: Histogram of the relative error between true emission rates and predictions by the EfficientNetB0 model.


