
18th International Conference on
Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

9-12 October 2017, Bologna, Italy
______________________________________________________________________

USING SENSOR DATA AND INVERSION TECHNIQUES TO SYSTEMATICALLY REDUCE
DISPERSION MODEL ERROR

D. J. Carruthers1, A. L. Stidworthy1, D. Clarke2,  K.J. Dicks3, R. L. Jones4, I. Leslie5, O. A. M. Popoola4,
A. Billingsley6 and M. Seaton1

1Cambridge Environmental Research Consultants, Cambridge, UK
2Cambridgeshire County Council, Cambridge, UK

3Cambridge City Council, Cambridge, UK
4Department of Chemistry, University of Cambridge, UK

5Computer Laboratory, University of Cambridge, UK
6Environmental Instruments, Stratford-upon-Avon, UK

Abstract: An optimisation scheme has been developed that uses inversion techniques to modify pollution emission
rates based on sensor data to improve dispersion model accuracy. The scheme minimises a cost function using a non-
negative least squares solver. Error covariance is defined in relatively simple terms for both emissions and monitored
concentrations. The scheme has been tested in an initial case study in Cambridge using monitored data from four
reference monitors and twenty AQMesh sensor pods for the period, 30 June 2016 – 30 September 2016. Hourly NOx

concentrations from road sources modelled using ADMS-Urban and observed concentrations were processed using
the optimisation scheme and the adjusted emissions were re-modelled. The optimisation scheme improved model
accuracy and reduced average road emissions on average by 6.5% compared to the original estimates. Future work
will focus on developing more complex representations of error covariance and on extending the scheme to multiple
source types and pollutants.
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INTRODUCTION
Compiling an accurate emissions inventory for an urban area is a challenging and time consuming task.
Even where comprehensive and detailed emissions inventories exist, errors in rates of emissions account
for a significant proportion of dispersion model error; for example there is high uncertainty in published
NOX emission factors for light-duty diesel vehicles (Anenberg et al., 2017) or for PM from residential
burning (Denier van der Gon et al., 2015). Traditionally, dispersion models used in urban areas are
validated by comparing measured and modelled concentrations at well-established monitoring sites
(Stocker et al., 2014); at best, modellers manually refine the dispersion modelling to minimise error at
these locations; at worst, modellers calculate ‘adjustment factors’ and apply these to modelled
concentrations. Meanwhile, the increasing availability of relatively low cost air pollution sensors that are
easy to install and to maintain is allowing networks of such sensors to be installed across urban areas
(Kumar et al., 2015). Although these sensors have reduced reliability and accuracy compared with
traditional monitors they allow much greater spatial coverage. This trend requires the dispersion
modelling community to examine how data from these networks can be used most effectively to assess
and improve dispersion models because the traditional model validation methods may not be appropriate.
A systematic method that integrates data from these low cost sensors with models could deliver real
benefits in terms of understanding and improving the quantification of emissions and improving model
calculations of concentrations of pollutants. It also offers the opportunity to examine important questions
such as: what spatial separation or number of sensors is sufficient to optimise emissions through inverse
modelling; and what is the relative effectiveness of a small number of reference monitors and a larger
number of sensors. This paper presents the implementation of an inversion technique (e.g. Webster et al.,
2016) in the street scale resolution urban dispersion model ADMS-Urban (Owen et al., 2000). The
methodology has been tested using data from four reference monitors and twenty AQMesh sensor pods
(Carruthers et al., 2016) in Cambridge.



METHODOLOGY
The inversion method (e.g. Webster et al., 2016) requires minimisation of the cost function defined
in equation (1); the equation parameters together with their dimensions are defined in Table 1.= − − + − ( − ) (1)

The first term represents model error taking into account observation uncertainty; the second term
represents emissions error taking into account emissions uncertainty. Given an initial set of emissions
data, this cost function is minimised using a non-negative least squares solver to find a revised set of
emissions data that reduces model error.

Table 1. Definition of cost function equation parameters
Quantity Definition Dimensions

Vector of emissions (result) n
Transport matrix relating the source term to the observations n by k
Vector of observations k
Error covariance matrix for the observations k by k
Vector of first guess emissions n
Error covariance matrix for the first guess emissions n by n

A key challenge of the implementation of the inversion technique is to quantify the covariance of
emissions error between sources of the same type, between sources of different types and between
pollutants; similarly, to quantify the covariance of observation error between monitoring sites and
between pollutants. The diagonal values in the error covariance matrices represent the variance . To
obtain the error covariance matrix values it is assumed that the standard deviation is equal to the
uncertainty in the measurement or emission and that this is proportional to the measurement or emission.

is a fraction that represents the uncertainty in the emissions; and are fractions that represent
the uncertainties in the observations at the reference monitors and sensors respectively. The error
covariance matrix values off the diagonal relate to the proportion of the error that is due to systematic
error between different sources and different sensors. For example, in the case of road sources, one source
of systematic error would be error in the emissions factors (e.g. road traffic emissions factors, which are
used by all sources). Unsystematic error might be, for example, an error in the traffic count on a particular
road. It is assumed that a fraction of error is due to systematic errors. For the observations, we
assume that there is zero error covariance between monitors of different types (e.g. between reference
monitors and sensors) and we simply assume that a fraction of reference monitor error is
systematic and a fraction of sensor error is systematic.

CASE STUDY
During 2016 twenty AQMesh sensor pods
(Carruthers et al., 2016) were deployed
across Cambridge in addition to four
reference monitors already in situ (see
Figure 1). The sensors measure NO, NO2,
NOx, O3, CO, SO2, PM1, PM2.5, PM10 and
TPC at intervals of fifteen minutes. For the
optimisation scheme case study, only
hourly averaged NOx concentrations were
considered and it was assumed that local
emissions were dominated by road traffic
emissions. The period analysed was 30
June 2016 – 30 September 2016. The aims
of this initial case study were two-fold:
firstly, to test that the optimisation scheme
behaves as expected and to find and correct
any errors in the scheme; secondly, to
examine whether, even with the relatively

Figure 1. Map of Cambridge showing the locations of the AQMesh
sensors, the reference monitors and the 305 road sources modelled.



simple representation of error co-variance described above, the adjusted emissions calculated by the
optimisation scheme deliver any improvements in model predictions. The stages in the analysis were as
follows: road emissions were modelled using ADMS-Urban for each hour of the three month period using
a road traffic emission inventory for Cambridge and meteorological data from the Andrewsfield weather
station 40 km to the south-east of Cambridge; the transport matrix, emissions vector and monitored data
vectors were formed; the optimisation scheme was executed for each hour independently to determine the
adjusted emissions for each hour; and finally the adjusted road emissions were re-modelled with ADMS-
Urban keeping all other inputs unchanged. The optimisation was performed twice: firstly including both
the reference monitor data and AQMesh sensor data in the optimisation scheme; secondly including only
the AQMesh sensor data in the optimisation scheme. The uncertainty and covariance factor values used
are shown in Table 2. These values represent plausible estimates but would need refinement in any further
study. It was assumed that the error covariance factors for both the sensors and reference instruments
were small, but are more significant for emissions since the latter depend on road traffic emission factors
common to all sources.

Table 2. Variance and co-variance uncertainty factors
Parameter name Description Value
UOR Observation uncertainty (reference monitors) 0.1
UOS Observation uncertainty (sensors) 0.3
UORF Observation uncertainty covariance factor (reference monitors) 0.05
UOSF Observation uncertainty covariance factor (sensors) 0.1
UE Emissions uncertainty 0.5
UEF Emissions uncertainty covariance factor 0.4

RESULTS
The analysis of the case study results focuses on two aspects: firstly on how the modelled concentrations
using adjusted emissions compare with observed concentrations and the original modelled values in the
two cases; and secondly how the adjusted emissions compare with the original emissions in the two cases.

Effect of the optimisation on modelled concentrations
The modelled concentrations using adjusted emissions when both the reference monitor data and the
AQMesh sensor data are included in the optimisation demonstrates the expected behaviour. Figure 2
shows an example for one hour, comparing observed NOx concentrations with the original modelled
concentrations and with the modelled concentrations using adjusted emissions. Since the uncertainty for
the AQMesh sensors is higher than that assumed for the reference monitors, the adjustments at the
reference sites are larger. To examine the effect of the optimisation in the two cases on model
performance, observed concentrations at the reference monitors were compared with modelled
concentrations using: unadjusted emissions (‘Original’); emissions adjusted using reference monitor data
and sensor data (‘Adjusted, all sensors’); and emissions adjusted using sensor data only (‘Adjusted,
AQMesh sensors only’).

Figure 2. Change in mean emission rate per road source
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Figure 3 shows scatter plots of the
comparison; Table 3 shows model
evaluation statistics for the same cases.
The results show that as expected, if the
reference data are included in the
optimisation then the model performance
at the reference sites using the adjusted
emissions improves dramatically. Of
course, any monitor data being used for
model validation should be excluded from
the optimisation, but this result
demonstrates that the scheme is behaving
in the expected way. The few points
above the y=2x line in this case represent
data points that were omitted from the
optimisation process because the
monitored value was lower than the
background concentration. The more
important result is that if only the
AQMesh sensor data are included in the
optimisation the model performance at the
reference sites improves noticeably: the
scatter is reduced, the bias is reduced and
the correlation is increased.

Table 3. Model performance statistics at the reference sites for three emissions cases: original emissions; adjusted
emissions using all reference monitor and AQMesh sensor data; and adjusted emissions using AQMesh sensor data

only
Statistics Original Adjusted, all sensors Adjusted, AQMesh sensors only

Mean Obs 31.2 31.2 31.2
Mod 34.5 29.3 31.3

StDev Obs 27.9 27.9 27.9
Mod 31.0 26.0 27.0

MB 3.30 -1.91 0.10
NMSE 0.51 0.05 0.39
R 0.70 0.97 0.75
Fac2 0.71 0.94 0.73

Effect of the optimisation on emissions
The average diurnal emission factors and average emission rates were calculated for the original
emissions and for the two sets of adjusted emissions. Figure 4 compares the diurnal emission factors,
Figure 5 compares the average emission rate per road source and Table 4 gives the average difference in
emission rate over all sources.

Figure 4. Comparison of diurnal emission factor profiles calculated from the original and adjusted emissions
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Figure 3. Frequency scatter plots of modelled versus observed
hourly NOx concentrations (ppb) at the reference monitors for three
emissions cases: original emissions; adjusted emissions using all
reference monitor and AQMesh sensor data; and adjusted emissions
using AQMesh sensor data only



Table 4. Average change in NOx emission rate (g km-1 s-1)
Original Adjusted Change

All sensors 0.1552
0.1478 -4.8%

AQMesh only 0.1452 -6.5%

The diurnal emission factor profiles show that on
weekdays the optimisation reduces the evening rush-
hour emissions peak and increases the signal of the
morning rush-hour peak. The magnitude of the
change is slightly greater when the reference monitor
data are not included in the optimisation, but the
patterns of the changes are very similar irrespective
of whether the reference monitors are used. The
effect of the optimisation scheme on average
emission rates is to reduce the emission from every
source. When the reference monitors are included in
the optimisation the calculated reduction in
emissions is lower because on average the reference
monitors’ measured concentrations are slightly more
consistent with the initial estimate of emissions.

CONCLUSION
The optimisation scheme presented here, using inversion techniques to modify pollution emission rates
based on sensor data, has been shown to improve the accuracy of modelled concentrations. The current
version of the scheme uses a relatively simple representation of error covariance. Indicators of emissions
error covariance that are not yet accounted for include: distance between sources and meteorological
factors such as temperature. Multiple pollutants and different source types also need to be accounted for;
in the study presented here only road source emissions of NOx have been considered, but a
comprehensive ADMS-Urban modelling study of an urban area will also include pollutants such as PM10

and PM2.5, and point, line, area and volume sources in addition to road sources. Defining the covariance
in error between different pollutants and between difference source types presents a challenge, but the
encouraging initial results presented here suggest that this approach could make practical use of large
networks of low-cost sensors to improve dispersion model results.
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Figure 5. Scatter plot of adjusted versus original
NOx emission rates. The y=x line is shown in grey.


