18th International Conference on
Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes
9-12 October 2017, Bologna, Italy

THE ROLE OF MULTI-MODEL ENSEMBLES IN ASSESSING THE AIR QUALITY IMPACT
ON CROP YIELDS AND MORTALITY

Efisio Solazzo', Angelo Riccio®, Rita Van Dingenen' and Stefano Galmarini'

' European Commission, Joint Research Centre (JRC), Ispra (VA)
2 University of Naples Parthenope, Naples (Italy)

Abstract:

This work promotes a critical use of modelling information on air-pollution health and agriculture impacts, with the
primary goal of providing more reliable estimates to decision makers and stakeholders. To date, the accuracy of air
quality (AQ) models and the quantification of the uncertainty of their results have rarely been quantified explicitly in
impact assessment studies, therefore without giving information on the robustness of the information used in the
decision making process and undermining the confidence in the results obtained. A suite of twelve regional-scale
chemistry transport AQ models produced in the third phase of the Air Quality Model Evaluation International
Initiative (AQMEII) is used here to calculate the impact of PM, 5 and ozone on human health and crop yields and the
associated uncertainties over Europe. A novel methodology is developed and applied to remove the offsetting bias
from the models, which are then combined in multi-model (MM) ensembles. The application of unbiased MM
ensembles offers an unprecedented attempt to i) establish and i) mitigate the uncertainty due to AQ modelling on
impact calculations.

We use the FASST (FAst Scenario Screening Tool) impact assessment tool to demonstrate that the accuracy of
assessment of ozone-induced crop loss of wheat and maize and impact on human health (mortality) can improve
dramatically when using accurate MM ensembles in place of single model realizations, as it is commonly assumed.
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INTRODUCTION

As air quality (AQ) models are routinely consulted by decision makers for compliances against regulatory
targets, accurateness and reliable results are mandatory. Further, AQ models are at the core of
accountability research to demonstrate the extent to which regulations causally impacted emissions, air
quality, and public health, aiming at integrating the assessment of societal and economic impact of air
pollution on the biosphere, in particular on human health, agriculture, and ecosystems. Because of their
intrinsic limitations and uncertainties, it is necessary to estimate the uncertainty due to AQ modelling,
since the misestimate of the uncertainty could deteriorate the range of potential impact outcomes.

The cause-effect chain from emission, to dispersion and exposure (of people, crops, etc.) to quantification
of impacts and economic valuation, forms the base of the AQ impact calculation. Each element of the
chain involves a specific kind of model and relies on different input data. Both elements are affected by
errors and more or less sophisticated calculation methods produce uncertainties that propagate and
interact throughout the chain. The uncertainties associated with AQ predictions are often overlooked and
even more rarely accounted for explicitly, as more emphasis is given to the uncertainty associated with
the dose-response estimates and population exposure, gravely overlooking the fact that air concentration
levels are primary information that will affect all subsequent calculation.

Understanding how the overall AQ uncertainty is conveyed to the health and crops impact calculations
and how to mitigate it are the main aims of this study. A suite of 12 regional models (described in Solazzo
et al., 2017) participating to the third phase of the Air Quality Model Evaluation International Initiative
(AQMEII3) is used here to calculate the impact of PM, s and ozone on mortality and crop yields and the
associated uncertainties over Europe for the year of 2010. A novel technique is applied to remove the
offsetting bias from the models by using the spatially distributed time series of measurements obtained by



the regulatory AQ networks. The unbiased models are then statistically combined in multi-model (MM)
ensembles to quantify explicitly the physical range of variability associated with AQ modelling.

The unbiased MM ensemble has been used to calculate the impacts of PM, s and ozone on human health
and the impact of ozone on crop yield by adopting the impact formulations implemented in the TM5-
FASST (FAst Scenario Screening Tool) tool (Rao et al., 2016). FASST consists of i) a module to go from
emissions to concentrations/metrics using source-receptor relationships (eg from TMS), and i7) modules
to calculate impacts from concentrations/exposure metrics (eg from external models like MM ensemble).
The MM-FASST impact calculations have been compared against the ‘standard’ FASST outcome, based
on the source-receptor relationships calculated by means of the TM5 global AQ model and by the EMEP
regional AQ model.

METHODOLOGY AND RESULTS

The removal of the bias, or more correctly its adjustment, operates in the direction of compensating the
common errors but leaving the portion of uncertainty due to internal model components. Since all
AQMEII3’s models rely on the same set of emissions and boundary conditions (while are free on the
choice of the meteorological drivers), the benefits of combining the models into ensemble is negligible
(all the bias associated to these fields having the same sign). Thus, once the common bias is removed, the
variability left is largely dominated by the intrinsic diversity of the models, which is based on the way
physical processes are described by each member (model) of the ensemble. We do not want to remove
these differences as they are carriers of very relevant information, which is the basis for defining ranges
of variability of the models results.

First, the bias at a specific grid cell is constrained to be lower than the corresponding modelled result, to
avoid meaningless negative corrected values. Moreover, model values are assumed to be affected by a
slowly varying bias, encoded through a smoothness constraint, and large model-to-data deviations are
penalised to preserve the original model estimation as much as possible through a simple Tikhonov
regularization, constraining the squared length of the solution. These conditions are mathematically
equivalent to the minimization of the cost function J=J;+J,+J;, with the three contributions given by:

J1=wM(x—b)—y)"(M(x—b)—y)
J» = €(Db)"(Db) Eq 1l
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x and y are the model results and observations, respectively; b is the vector of bias corrections. M is a
matrix mapping model results onto observation sites. J; measures the misfit between model values and
observations. @ weights the distance of corrected model values from observations. Smoothness is implied
by J,, where D is a tridiagonal matrix with elements on the main diagonal equal to -2 and elements of the
diagonals above and below equal to 1 (i.e. the discrete representation of the second derivative), and ¢ a
regularisation parameter determining the weight of this smoothness constraint. The preference for small
bias corrections is given by J;, where J measures the weight of this constraint relative to the previous one.
The accuracy of hourly ozone (median values over 1061 monitoring stations) has improved by ~4 times
due to the bias adjustment (not shown).

The MM mean (hereafter we refer to MM, .4, to indicate the unbiased MM mean in contrast to the

uncorrected, biased MM mean indicated as MM,,,..,) is used here to assess:

1. the yield reduction due to surface ozone exposure for the year 2010 is estimated for wheat and maize
(Figure 1) using the accumulated ozone above 40 ppbv threshold (AOT40) metric. The concentration-
response functions implemented within FASST, derived from field studies (details in Van Dingenen et
al., 2009 and reference therein), have been adopted,

2. the mortality due to exposure to PM,s (Figure 2) and ozone (Figure 3). The hourly modelled
concentrations are aggregated according to the underlying epidemiological studies implemented in
FASST to estimate mortality (Anenberg et al., 2010; Burnett et al., 2014). For PM, s, the annual
average concentration is used, whereas for ozone the maximal 6-month ozone average of the 1-h daily
maximum ozone concentration (M6M) is used. The results for these two metrics are made available



on a regular grid of 25 x 25 km horizontal spacing covering the European continent with 65341 cells.
The AQ models used in this study included the contribution of natural sources to the total
concentration. A zero-risk threshold of 5.8 ug m is set for PM, s and of 33.5 ppb for ozone.

maize - AOT40 czone

wheat - AOT40 ozone.

Figure 1. Crop loss (in log;o kTonnes/year) for wheat (left) and maize (right) calculated by using the corrected and
uncorrected MM, .., for calculating the AOT40 ozone during the growing season. The envelope around the mean
(tick lines) represents the wheat yields reduction calculated by taking the minimum and maximum values of the
models participating to the ensemble, for each grid cell falling within the country boundaries. The vertical bars
represent the confidence interval (at 95™ percentile) associated with the response function.
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Figure 2. Mortality calculated by using the corrected and uncorrected MM,;c.,. The envelope around the mean (tick
lines) represents the mortality calculated by taking the minimum and maximum values of the models participating to
the ensemble, for each grid cell. The vertical bars represent the confidence interval (at 95" percentile) associated with
the response function. Anthropogenic threshold concentration set to 5.8 ug m™

The results show that
- the MM, 4, reduces drastically the AQ uncertainty, well below the uncertainty of the dose-response
function for health (Figure 2 and Figure 3) and to approximately comparable levels for maize and
wheat yield reduction (Figure 1), although country-dependent.



- the bias adjustment sensibly affects the mean value producing lower values for mortality due to PM, s
(e.g. in excess of 50% lower in the UK, Figure 2) and significantly higher values for crop loss (both
cultures, Figure 1).

- The bias correction is more effective to the lower bound of the uncertainty, avoiding the
underestimation of the impact deriving from the uncorrected MM, that, except for PM, s health
impact, is of zero. This means that there are modelled values in each cell predicting much lower
concentration (zero or close to zero) than the observations. The removal of the bias shifts upwards the
lowest values, producing more meaningful and reliable uncertainty ranges. The upper bound of the
uncertainty is relatively less affected than the lower one for ozone (Figure 1 and Figure 3) as the
metrics used, M6M and AOT40, involve the calculation of maximum and cumulative concentrations
above a high threshold, respectively, and AQ models are typically tuned to reproduce such values. In
fact, when using the annual average (PM, s, Figure 2), the discrepancy between the upper bounds of
the uncertainty for MM,,,4,, and MM yean is significantly larger.

- The efficacy of the bias correction is limited by the availability of surface measurements. Dense
spatial coverage would be ideal and, although spatial heterogeneous, the surface European networks
can be suitably used for the purposes of the bias adjustment. For countries like Ukraine and Turkey,
for which measurements have not or only partially been retrieved respectively, the uncertainty is not
mitigated to the same amount as for the western European countries.
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Figure 3. As in Figure 2 for ozone. Anthropogenic threshold concentration set to 33.5 ppb

The plot in Figure 4 shows the comparison of the PM,; s-induced mortality when calculated by using
different AQ drivers for the FASST tool: the AQMEII3 MM ensemble, and the source-receptors
relationships derived by the global TMS and by the regional EMEP models. The figures provided by
Holland (2014), which are part of the estimates used by the European Union’s Thematic Strategy on Air
Pollution, are also reported although not directly comparable with FASST as based on slightly different
dose-response functions and population maps. The bars represent the uncertainty range as estimated by
the MM p,0q,. As a general trend, at least for the most populated countries, the MM estimates lie between
the TM5 (lower) and the EMEP (upper estimates). The latter is often embedded within the MM, .4,
uncertainty range, while the TMS5-FASST is often below the lowermost uncertainty range. Investigations
are ongoing to explain such differences.

CONCLUSIONS



This work responds to the need of a more detailed assessment of uncertainty and of an increase
in the confidence in impact assessment model results. The focus of the paper is the impact of air
pollution and in particular PM, s and ozone on human health and crop yields. The combination
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Figure 4. Mortality induced by exposure to surface PM, 5 in 2010 estimated by the FASST tool driven by the
AQMEII3 corrected MMeqn » by the TMS global model, and by the source-receptor relationships derived by the
EMEP model. The data by Holland (2014) are also included for comparison. The bars are the uncertainty associated
with MM, g, the unbiased MM,,can.

of bias correction and multi-model ensemble provides the highest level of quality achievable for
the AQ input to an impact assessment model and presented to date in the literature. The results
so far do prove that the bias adjustment sensibly reduces the uncertainty and changes the mean
value significantly for both crop yield loss and mortality estimates. The results for mortality are
provided with uncertainty ranges allowing a more usable and reliable information in a policy
making context.
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