Coupled Urban Outdoor and Indoor Synthetic Dispersion Environments

P.E. Bieringer, M.D. Sohn, H. Jonker, A. Piña, G. Bieberbach, and D. Lorenzetti

October 10, 2017

This research was funded in part by the Defense Threat Reduction Agency and performed under U.S. Department of Energy Contract number DE-AC02-05CH11231. Aeris research funded as a subcontractor to Lawrence Berkeley National Laboratory (LBNL).

Distribution A: Approved for public release, distribution is unlimited
Outline

• Background and enabling technology
 – Motivation for a coupled urban and interior virtual CBRN environment
 – Virtual environment system design
 – Graphics processing unit (GPU) based atmospheric dispersion modeling

• GPU-Large Eddy Simulation (LES) system validation effort

• GPU-LES system demonstration

• Looking forward
Outline

• Background and enabling technology
 – Motivation for a coupled urban and interior virtual CBRN environment
 – Virtual environment system design
 – Graphics processing unit (GPU) based atmospheric dispersion modeling

• GPU-Large Eddy Simulation (LES) system validation effort

• GPU-LES system demonstration

• Looking forward
Indoor and Outdoor Air Quality (Importance of Coupling Indoor/Outdoor Dispersion Models)

• Most of the world’s population lives in urban locations
 – In the US, > 80%
 – Urban populations are expected to continue to grow

• People spend the majority of their time indoors
 – In the US, > 86%

• Urban - indoor environments are some of the highest impact locations for health effects from pollution

Image Sources:
Urban and Outdoor Pollution Dispersion Models (Virtual Environment System Design)

Urban Outdoor Virtual Environments

Winds and Turbulence

CB Concentrations

Indoor Virtual Environments

Analytical Models

\[k_2 \quad C_2 \quad k_{12} \quad C_1 \quad k_1 \]

Multi-zone Models

Air Quality Analysis Outcomes

Individual Scenario Consequence

Outcome Distribution

Use Improve Our Understanding of Indoor-Outdoor Contaminant Exchanges

Image sources:
Enabling Technology
(GPU Resident Atmospheric Simulation Program (GRASP))

Publications:
- Schalkwijk et al. *BAMS* 2012
- Schalkwijk et al. *MWR* 2015
- Schalkwijk et al. *BAMS* 2015
- Schalkwijk et al. *BLM* 2016
Enabling Technologies
(Background on GPU and CPU Hardware Designs)

- CPU is optimized to perform sequential operations
 - Multiple ALU’s (cores) enable some parallel performance
 - Typically has a large cache memory availability compared to GPU

- GPU is optimized to perform highly parallel operations
 - Numerous ALU’s (1000’s on a single GPU card)
 - Faster and more advanced memory interfaces
 - Currently in a phase of rapid hardware technology advancements

Image Source: - http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.jpg
Atmospheric Modeling
(Past Practices for “GPU-Accelerated” HPC Computing)

Atmospheric Modeling on a CPU/GPU Computer

- CPU
 - Advection
 - Radiation
 - Surface
 - Routine 5
 - Routine 6

- GPU
 - Routine 4
Atmospheric Modeling
(Next Generation of GPU HPC Computing)

GPU Resident Modeling

Returning us to a “Shared-Memory” Computing Paradigm
This Technology Enables
(Ensembles of Single Realization Dispersion Solutions)

• GPU provides substantial computational advantage over comparable CPU-based solution
 • Example: 1-hr simulation
 • 8 core Intel Xenon: 1hr 32 mins
 • Nvidia K40: 36 seconds

• Rapid technology advances

GPU vs. CPU Floating Point Operations
Outline

• Background and enabling technology
 – Motivation for a coupled urban and interior virtual CBRN environment
 – Virtual environment system design
 – Graphics processing unit (GPU) based atmospheric dispersion modeling

• GPU-Large Eddy Simulation (LES) system validation effort

• GPU-LES system demonstration

• Looking forward
GPU-LES Dispersion Model System Validation
(Incremental Approach From More Simple to More Complex)

• Meteorological validation: *Completed*

• Open terrain atmospheric transport and dispersion (AT&D): *In process*
 – Completed for unstable boundary layer
 – Neutral and stable boundary layer are in process

• “Building aware” meteorology and AT&D: Collecting data sets and developing simulations
 – Mock urban setting test (MUST)
 – 2015 Jack Rabbit II urban container testing (JRII-2015)

• Indoor-outdoor contaminant transport: No activity yet
GPU-LES Dispersion Model System Validation
(Incremental Approach From More Simple to More Complex)

- Meteorological validation: *Completed*

- Open terrain atmospheric transport and dispersion (AT&D): *In process*
 - Completed for unstable boundary layer
 - Neutral and stable boundary layer are in process

- “Building aware” meteorology and AT&D: Collecting data sets and developing simulations
 - Mock urban setting test (MUST)
 - 2015 Jack Rabbit II urban container testing (JRII-2015)
 - Joint Urban 2003 (JU2003)

- Indoor-outdoor contaminant transport: No activity yet
Open Terrain Validation
(Model Simulation Design)

• GPU-LES configuration patterned after Weil et al. 2004 & 2012
 - Horizontal resolution: ~50 m vertical resolution: ~20 m
 - Domain: ~13 x ~13 km x ~2 km (*Larger than Weil et al. 2004*)
 - CBL depth: 1 km and heat flux = 0.24 m s\(^{-1}\) K
 - Wind Speed: ~3 ms\(^{-1}\) in convective boundary layer

• Release characteristics
 - Continuous near surface point release
 - 130 uncorrelated realizations produced
 - Time and space differences used to create the realizations

• Dispersion characteristics examined
 - Plume height normalized by the boundary layer height
 - Surface crosswind integrated concentration (CWIC)
 - Vertical profiles of CWIC
 - Surface crosswind dispersion
 - Vertical dispersion
Allow the Turbulence to Spin Up in the Model
Open Terrain Validation
(Model Simulation Design)

Create Uncorrelated Dispersion Realizations
Realization = 01
Minutes since release: 00.0
Open Terrain Validation
(Model Simulation Design)

Create Uncorrelated Dispersion Realizations
(Example – 6 Minutes After Start of Release)
Open Terrain Validation
(Plume Height Calculations)

GPU-LES Average Plume Height

CONDORS Obs.
- Oil fog
- Chaff
- Pds. 32,33

Weil et al. (2012) Analysis

a) $z_p / z_i = 0$

Dimensionless Downwind Distance

$$X = \frac{w_x x}{U z_i}$$

Open Terrain Validation
(Cross Wind Integrated Concentration (CWIC) Calculations)

Weil et al. (2012) Analysis

GPU-LES Average CWIC
Realizations: 130

Dimensionless Downwind Distance

\[X = \frac{w_* x}{U z_i} \]

Concentration

\[CWIC = \frac{C^* U z_i}{Q} \]
Open Terrain Validation
(CWIC Vertical Profile Calculations)

Weil et al. (2012) Analysis

GPU-LES Vertical Profiles of CWIC

Dimensionless Downwind Distance

\[X = \frac{w_x x}{U z_i} \]

Concentration

\[CWIC = \frac{C^* U z_i}{Q} \]

Open Terrain Validation
(Surface Cross Wind Integrated Concentration (CWIC) Calculations)

Weil et al. (2012) Analysis

Dimensionless Downwind Distance

\[X = \frac{w_{x,x}}{U z_i} \]

Concentration

\[CWIC = \frac{C^v U z_i}{Q} \]

Open Terrain Validation
(Surface Cross Wind Dispersion Calculations)

Weil et al. (2012) Analysis

Dimensionless Downwind Distance

$$X = \frac{w_s x}{U z_i}$$

GPU-LES Surface Cross Wind Dispersion

UNCLASSIFIED

Open Terrain Validation
(Surface Vertical Dispersion Calculations)

Weil et al. (2012) Analysis

Dimensionless Downwind Distance

\[X = \frac{w_x x}{U z_i} \]
Outline

• Background and enabling technology
 – Motivation for a coupled urban and interior virtual CBRN environment
 – Virtual environment system design
 – Graphics processing unit (GPU) based atmospheric dispersion modeling

• GPU-Large Eddy Simulation (LES) system validation effort

• GPU-LES system demonstration

• Looking forward
UNCLASSIFIED

Demonstration
(Open Terrain Example)

- Open terrain simulation specifications
 - 128 x 128 x 64 grid
 - Horizontal resolution: 20 m
 - Vertical resolution ~17 m

- Simulation scenario
 - Boundary layer (BL) depth: 550 m
 - Surface heating: 50 W/m²
 - Winds:
 - 3 m/s in PBL
 - 4 m/s above PBL

- Simulation time on NVIDIA K40
 - 2880 ALU cores
 - 12 Gb of onboard memory
 - 1-hr simulation takes ~ 36s
Demonstration
(Open Terrain Example)
Outline

• Background and enabling technology
 – Motivation for a coupled urban and interior virtual CBRN environment
 – Virtual environment system design
 – Graphics processing unit (GPU) based atmospheric dispersion modeling

• GPU-Large Eddy Simulation (LES) system validation effort

• GPU-LES system demonstration

• Looking forward
Looking Forward
(Incorporation of Buildings)

Davidson et al. (1995) Experiment

Looking Forward
(Linking the Indoors to the Outdoors)

Two Zone Box Model

Image Courtesy of Darrel Johnston SWRI – 2015
Demonstration (Building Aware Example)

- **“Building-aware” terrain simulation specifications**
 - 256 x 256 x 128 grid
 - Horizontal resolution: ~4 m
 - Vertical resolution ~8 m

- **Simulation scenario**
 - Boundary layer (BL) depth: 550 m
 - Surface heating: 25 W/m²
 - Winds:
 - ~3 m/s in PBL

- **Simulation time**
 - 2880 ALU cores
 - 12 Gb of onboard memory
 - 1-hr simulation takes ~ 155s
Demonstration
(Building Aware Example)