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Motivation

Traditional reference-standard air 
quality monitoring networks are high 

quality, but difficult to site and 
expensive to maintain, so the number 

of monitors is limited.

Could low-cost sensors, 
which are less accurate 
but easier to site and 
cheaper to buy and 

maintain, help to improve 
modelling?
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Motivation

 Emissions errors in urban areas account for a significant 
proportion of dispersion model error

 Traditionally, dispersion models such as CERC’s ADMS-Urban 
model are validated against data from reference monitors:

 Modellers either use the validation to improve model setup; or

 Calculate and apply a model adjustment factor to model results

 New low cost air pollution sensors allow large networks of 
sensors to be installed across a city

 Accuracy and reliability is generally lower than reference 
monitors, but larger spatial coverage is possible

 How can we best use these sensor data in modelling?

 If the data are not accurate and reliable enough for model 
validation, maybe we can use the data in a different way...



Harmo18, Bologna, October 2017

Overview

Future development

Case Study: Cambridge

Methodology
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Methodology: Introduction

 The aim was to develop an inversion technique to use 
monitoring data from a network of sensors to automatically 
adjust emissions to improve model predictions

 Basic idea:

 Run ADMS-Urban to obtain modelled concentrations at monitor 
locations in the normal way

 Take these modelled concentrations and their associated 
emissions as a ‘first guess’, together with 

a) monitored concentration data

b) information about the error in the monitored data and the proportion 
of that error that is systematic across all monitors

c) information about the error in the emissions data and the proportion 
of that error that is systematic across all sources

 Use an inversion technique to calculate an adjusted set of 
emissions that reduces error in the modelled concentrations
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Methodology: Introduction

 There are some conditions that have to be satisfied for such a 
scheme to work:

a) The modelled concentration must be proportional to the 
emissions, which means that complex effects like chemistry 
have to be ignored

b) Each modelled source must contribute to the concentration at 
least one receptor (monitor)

c) Each receptor included must have non-zero modelled and 
monitored concentration

 The technique developed uses a Bayesian inversion approach 
following work by others, for example as used by the Met 
Office for estimating volcanic ash source parameters using 
satellite retrievals [Webster et al, 2016]
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Methodology: Cost function

We define a cost function J(x) with two terms: one that describes 
the error in the modelled concentration (left-hand term) and one 
that describes the error in the emissions (right-hand term):

The aim is to minimise J to obtain x, a vector of adjusted emissions.

Quantity Definition Dimensions

x Vector of emissions (result) n

M Transport matrix relating the source term to the observations n by k

y Vector of observations k

R Error covariance matrix for the observations k by k

e Vector of first guess emissions n

B Error covariance matrix for the first guess emissions n by n

         exBexyMxRyMxx   11 TT
J
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Methodology: Cost function input

 The y and e vectors are straightforward to form

 To find the transport matrix M we run ADMS-Urban with unit 
emission rates for all sources and obtain the concentration at the 
receptors due to each source; the concentration results give M

Quantity Definition Dimensions

x Vector of emissions (result) n

M Transport matrix relating the source term to the observations n by k

y Vector of observations k

R Error covariance matrix for the observations k by k

e Vector of first guess emissions n

B Error covariance matrix for the first guess emissions n by n
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Methodology: Estimating error

Estimating emissions error (B) 

 For emissions, we need to 
estimate for each source (pair):

 Emission error

= Uncertainty Factor x Emission 
Rate

 Co-varying emission error

= Covariance Factor x Emission 
Error

 Example causes of co-varying error: 
common emissions factors, 
proximity of sources to each other

 Total Emission error includes both  
co-varying emission error and 
independent emission error

Estimating sensor error (R)

 For sensors, we need to 
estimate:

 Sensor error

= Uncertainty Factor x Monitored 
Concentration

 Co-varying sensor error

= Covariance Factor x Sensor Error

 Example causes of co-varying error: 
same sensor type, ambient 
temperature, humidity

 Total Sensor error includes both 
co-varying sensor error and 
independent sensor error



Harmo18, Bologna, October 2017

Methodology: Summary

Step 1: Run ADMS-Urban to obtain hourly 
modelled concentrations at monitoring site 
locations

Step 2: Form the transport matrix, error 
covariance matrices, emissions vector and 
monitored data vector for each hour

Step 3: Run the optimisation scheme 
independently for each hour

Step 4: Create an hourly factors (.hfc) file from 
the adjusted hourly emissions data

Step 5: Re-run ADMS-Urban using the adjusted 
emissions .hfc file 
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Cambridge Case Study: Background

20 AQMesh sensor 
pods

4 Reference monitors

3-month analysis 
period, July-Sept 2016

305 road sources
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AQMesh Sensors

 Used out of the box – no local calibration; pre-calibrated 
at AQMesh test facility

 Example of performance: NO2  sensor-sensor comparison
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NO2 Gonville Place comparison 

No reference data!

Gradient Intercept R2

pre 1.07 (0.01) 10.0 (0.1) 0.50

post 0.82 (0.01) 5.1 (0.13) 0.74

• Outliers removed (from 

reference)

• Significantly improved R2

• AQMesh ~ 0.82 of 

reference (unscaled)
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CERC’s ADMS-Urban Model
Annual average NO2 concentration map of 
Barcelona calculated using ADMS-Urban. 
Modelling by Barcelona Regional.

Annual average NO2 concentrations in Greater 
London calculated using ADMS-Urban

Annual average PM10 (µg/m³)
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Annual average 
NO2 over Hong 
Kong Island 
calculated using 
ADMS-Urban 
linked with CAMx
regional model

Annual average 
PM10 for Tblisi in 
Georgia calculated 
using ADMS-Urban
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Cambridge Case Study: Aims

 Two aims:

 Sense-check optimisation results, find and correct errors

 Test this hypothesis: Using inversion techniques, we can use 
sensor data to improve emissions and thereby improve 
model performance, judged at independent reference 
monitors.

 Initial study -simple implementation

 Only one source type: roads

 Only one pollutant: NOX

 Only 20 sensors – relatively small network

 Simple representation of error covariance
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Methodology: Summary

Step 5: Re-run ADMS-Urban using the 
adjusted emissions .hfc file 

Step 4: Create an hourly factors (.hfc) file 
from the adjusted hourly emissions data

Step 3: Run the optimisation scheme 
independently for each hour

Step 2: Form the transport matrix, error 
covariance matrices, emissions vector and 

monitored data vector for each hour

Step 1: Run ADMS-Urban to obtain hourly 
modelled concentrations at monitoring site 

locations
1. AQMesh sensor and reference 
monitors included in the 
optimisation. 

• Including the reference monitors helps 
us to sense-check the results and identify 
any errors

2. Only reference monitors 
included in the optimisation

• This scenario is also included to sense-
check results and identify errors

3. Only AQMesh sensors included 
in the optimisation.

• In this scenario, the reference monitor 
data is kept as an independent dataset 
for model validation.

Steps 2 to 5 completed three times, for 
three different scenarios:
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Cambridge Case Study: ADMS-Urban Setup

Emissions

•Annual averages + diurnal profiles (weekdays, 
Saturdays, Sundays)

•Road traffic count data from UK Govt and County 
Council

•Guided bus flows

•Road traffic emission factors for 2016 from the 
UK National Atmospheric Emissions Inventory 
(NAEI), adjusted for real-world emissions

Met data

•Andrewsfield Met Office site, 21 June – 30 
September

Background data

•Background NOx from Defra AURN 
measurements at rural sites

Monitoring data used for validation

•All monitoring data are provisional apart from 
Gonville Place reference monitor; AQMesh data 
were obtained in real time.

P:\IP\IP155 Cambridge sensors\Working\Documents\20161020_WindRose\2016_andrewsfield_subset.met
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Cambridge Case Study: Error Estimation
Parameter name Description Value

UOR Observation uncertainty  factor (reference monitors) 0.1

UOS Observation uncertainty factor (AQmesh sensors) 0.3

UORF Observation error covariance factor (reference monitors) 0.05

UOSF Observation error covariance factor (AQmesh sensors) 0.1

UE Emissions uncertainty factor 0.5

UEF Emissions error covariance factor 0.4

 Plausible estimates - would need refinement in any further study

 Assumed error covariance factors for both the sensors and 
reference instruments were small

 Assumed error covariance factors are more significant for 
emissions since depend on road traffic emission factors common 
to all sources
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Cambridge Case Study: Optimisation results

 The optimisation makes greater adjustment to the modelled 
concentration at the reference monitors than to the modelled 
concentration at the sensors - sensor uncertainty is higher than 
the reference monitor uncertainty

 The optimisation adjusts the modelled concentration at all 
sensors, not just at a selection of sensors - non-zero error 
covariance between sensors

Example of observed, modelled and adjusted NOx concentration for one hour only

Reference 
monitors AQMesh 

sensors
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Footprint: Contribution of roads to receptor

Gonville Road 
Reference 
monitor
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Cambridge Case Study: Optimisation results
Average diurnal profiles

Mean emission ratesEmission rate (gkm-1s-1) Original Adjusted Change

All sensors
0.1552

0.1478 -4.8%

AQMesh only 0.1452 -6.5%

Optimisation 
increases AM 

peak, decreases 
PM peak

Optimisation 
reduces mean 

emission rate of 
all sources

Including 
reference 

monitors has 
only a small 

effect on overall 
emissions
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Cambridge Case Study: Model outcomes

Statistics 1. 2. 3. 4.

Mean

Obs 31.2 31.2 31.2 31.2

Mod 34.5 29.9 31.0 29.4

StDev

Obs 27.9 27.9 27.9 27.9

Mod 31.0 26.6 27.0 26.1

MB 3.30 -1.28 -0.23 -1.78

NMSE 0.51 0.04 0.39 0.05

R 0.70 0.98 0.75 0.97

Fac2 0.71 0.94 0.73 0.94

Validation at Reference sites only
Original model results

Only reference sensor data 
included in optimisation

Only AQMesh sensor data 
included in optimisation

All sensor data included in 
optimisation
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Conclusions
 The optimisation scheme presented here, using inversion techniques 

to modify pollution emission rates based on sensor data, has been 
shown to improve the accuracy of modelled concentrations. 

 This study used a relatively simple representation of error covariance. 
Indicators of emissions error covariance that are not yet accounted 
for include: 

 Distance between sources

 Meteorological factors such as temperature

 Multiple pollutants (only NOx so far)

 Different source types (only roads so far)

 Defining/refining the covariance in error between different pollutants 
and between difference source types presents a challenge

 These initial results suggest that this approach could make practical 
use of large networks of low-cost sensors to improve dispersion 
model results and emission inventrories.


