CAPABILITIES OF BULGARIAN CHEMICAL WEATHER FORECAST SYSTEM EVALUATED WITH THE FAIRMODE DELTA TOOL

Emilia Georgieva, Dimiter Syrakov, Maria Prodanova, Kiril Slavov

National Institute of Meteorology and Hydrology
Bulgarian Academy of Sciences, Sofia
Scope

Why?
• positive previous experience with “DELTA-assessment” as fast diagnostic tool
• what can “DELTA-forecast” tell us about the performance of our modelling system

Purpose:
Preliminary check of 1 year of simulations (2015)
daily mean PM$_{10}$, daily max of 8h running mean O$_3$

Compare to previous evaluations
Outline

- The modelling system
- The AQ data set
- “DELTAs forecast” parameters
- Sensitivity check
- Results
- Concluding remarks
• Operational runs for +72h forecast

• 5 domains – EU-81km, 27km, 9km, 3km, SOF-1km

• SO$_2$, NO$_2$, O$_3$, PM$_{10}$

• Maps on
 http://info.meteo.bg/cw2.1
 http://info.meteo.bg/cw2.2

• Not used for regulatory purposes
• WRF v.3.6.1. - NCEP/GFS, Analysis nudging in D1

• CMAQ v.4.6 – CB-4, 14 vertical levels

• Emissions: TNO 2009 outside Bulgaria & National inventory for 2010, temporal allocation based on TNO profiles, GIS based system for spatial disaggregation

• Here use of model results with dx = 9km (Bulgaria domain)
The AQ dataset - 2015

33 background stations maintained by the National Executive Environment Agency

<table>
<thead>
<tr>
<th>No.stations</th>
<th>O3</th>
<th>PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background with data >75%</td>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

Urban, suburb

Rural (MNT) mountain 1750 m and 1325m
DELTA v5.5 – Forecast mode

• based on pairs of surface data mod-obs.
• in process of fine tuning
• Main MQI

\[Target_{\text{forecast}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (M^*_i - O_i)^2} \]

\[\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_{i-j} - O_i)^2} \]

- \(j \) - forecast time length (day)
- \(M^* \) - transformed model value to account for measurement uncertainty (U)

MQI = 1: model is as good as a persistent model
MQI < 1: better than the persistent model
MQI > 1: poorer performance
DELTA forecast parameters & input

- False alarms FA, missed alarms MA
- False alarm ratio \(\text{FAR} = \frac{\text{FA}}{\text{FA} + \text{GA} +} \)
- Probability of detection \(\text{DP} = \frac{\text{GA} +}{\text{MA} + \text{GA} +} \)
- Composite exceedance indicator \(\text{CEI} = 0.5(\text{DP} + 1 - \text{FAR}) \)

Input parameters:

1. Limit value (LV) (PM10 -50, O3 -120)
2. Uncertainty (fixed%, or variable)
3. Flexibility option for uncertainty behavior (conservative, caution, same as model)
4. Forecast time (D+1, D+2..)
Sensitivity to input parameters

1. Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>10%</th>
<th>50%</th>
<th>Variable</th>
<th>conserv</th>
<th>caution</th>
<th>as model</th>
<th>d+1</th>
<th>d+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQI</td>
<td>1.82</td>
<td>0.96</td>
<td>1.42</td>
<td>1.42</td>
<td>1.42</td>
<td>1.42</td>
<td>1.42</td>
<td>1.05</td>
</tr>
<tr>
<td>FAR %</td>
<td>27</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>26</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POD %</td>
<td>14</td>
<td>32</td>
<td>21</td>
<td>21</td>
<td>38</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Flexibility

- Improvement with higher U
- Flexibility changes FA, MA, not MQI; best with “as model”
- MQI improves with time lag

Selected options:

U – variable, flexibility – conservative, Day+1
Forecast Target plot PM10

- MQI > 1
- MA > FA
- BIAS < 0,

Mean OBS = 35.5 µgm$^{-3}$, mean MOD = 24.2 µgm$^{-3}$
Regional plots – PM10

North Bulgaria

CEI = 0.71

DP = GA+/ (MA+GA+)

DP = 29%

South Bulgaria

CEI = 0.61

DP = 15%

The first (Figure 3) for the probability of detection plots GA+ as red dots and (MA+GA+) as grey column for each station. A good model capability would see all red dots on top of the column.
Seasonal plots – PM10

Summer
- NQI = 2.35
- DP = 0%

Winter
- NQI = 1.60
- DP = 36%
Forecast Target plot O3 8hDMAX

- MQI > 1
- MA > FA
- Overestimation

mean OBS = 69.2 μgm$^{-3}$, mean MOD = 95.3 μgm$^{-3}$
Regional plots – Dmax 8h O3

North BG
DP = 6%

South BG
DP = 18%

MOUNT
DP = 31%

DP = GA+/(MA+GA+)

Red dots: GA+, grey bars: MA+GA+

MQI = 2.18

MQI = 1.98

MQI = 0.350

Harmo18, Bologna, Italy, 9-13 Oct 2017
The model overestimates night-time values

O3 hourly – time series

OBS ——— MOD ———

BG0053A

BG0056A

Harmo18, Bologna, Italy, 9-13 Oct 2017
MQI (forecast): The modelling system performs worse than the persistent model.

- The probability of detection of C>LV is \(\sim 20\% \).
- PM10 – OBS near LV, tolerance on the threshold?
- Spatial performance – North BG for PM10 and South BG MNT for O3.
- Seasonal performance – PM10 in winter, O3 in summer.
- DELTA tool – Useful, but sensitive to measurement uncertainty & flexibility input – not easy to interpret, technical errors.
- Meteorological variables – add to DELTA forecast.