Analysis of Variations of Concentrations with Downwind Distance and Characteristics of Dense Gas Plume Rise for Jack Rabbit II–2015 and 2016 Chlorine Field Experiments

Steven Hanna1, Joseph Chang2, Thomas Mazzola3

1Hanna Consultants, Kennebunkport, ME; 2RAND, Arlington, VA; 3Engility, Lorton, VA

HARMO 18, Bologna, Italy, 9-12 October 2017
JR II Cloud, Trial 5, looking toward south (upwind) 0.5 sec after release starts

Side to side dimension of obstacle array = 100 m
Jack Rabbit II

• Follows JR I (10 trials in 2010), releasing 1 or 2 tons of pressurized liquefied chlorine or anhydrous ammonia. Mostly light winds, downward release into artificial 2 m deep by 25 m radius depression. C observations to 500 m.

• JR II 2015 – 5 trials, releasing 5 to 9 tons. Moderate winds, downward release in middle of mock urban array. Downwind C observations to 11 km, and inside some buildings.

• JR II 2016 – 4 trials, releasing 10 to 20 tons over flat desert surface (same set-up as 2015 but with mock urban array removed). Trials 6 and 9 downwards, trial 7 45° downwards, trial 8 up.
10 ton Tank used for JR II Chlorine Releases
Designed by Tom Spicer (in photo)
Summary of JR II – 2015 and 2016

<table>
<thead>
<tr>
<th>Trial</th>
<th>day</th>
<th>time</th>
<th>release duration</th>
<th>total jet mass kg</th>
<th>Q (kg/s)</th>
<th>wind speed at z = 2 m</th>
<th>wind direction</th>
<th>Avg T C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/24/2015</td>
<td>7:35:46 AM</td>
<td>22.2 s</td>
<td>4545</td>
<td>204.7</td>
<td>3.1</td>
<td>147</td>
<td>17.7</td>
</tr>
<tr>
<td>2</td>
<td>8/28/2015</td>
<td>9:24:21 AM</td>
<td>32.4</td>
<td>8192</td>
<td>252.8</td>
<td>2.5</td>
<td>158</td>
<td>22.7</td>
</tr>
<tr>
<td>3</td>
<td>8/29/2015</td>
<td>7:56:55 AM</td>
<td>20.3</td>
<td>4568</td>
<td>225.0</td>
<td>4.1</td>
<td>170</td>
<td>22.6</td>
</tr>
<tr>
<td>4</td>
<td>9/1/2015</td>
<td>8:39:33 AM</td>
<td>28.8</td>
<td>7017</td>
<td>243.6</td>
<td>3.6</td>
<td>184</td>
<td>22.6</td>
</tr>
<tr>
<td>5</td>
<td>9/3/2015</td>
<td>7:29:09 AM</td>
<td>33.6</td>
<td>8346</td>
<td>248.4</td>
<td>5.0</td>
<td>183</td>
<td>22.2</td>
</tr>
<tr>
<td>6</td>
<td>8/31/2016</td>
<td>8:23:35 AM</td>
<td>33.2</td>
<td>8392</td>
<td>252.8</td>
<td>2.3</td>
<td>160</td>
<td>22.0</td>
</tr>
<tr>
<td>7</td>
<td>9/2/2016</td>
<td>7:56:00 AM</td>
<td>36.4</td>
<td>8620</td>
<td>236.8</td>
<td>4.5</td>
<td>160</td>
<td>18.9</td>
</tr>
<tr>
<td>8</td>
<td>9/11/2016</td>
<td>9:01:45 AM</td>
<td>30.0</td>
<td>2368</td>
<td>78.9</td>
<td>2.2</td>
<td>175</td>
<td>14.8</td>
</tr>
<tr>
<td>9</td>
<td>9/17/2016</td>
<td>8:05:00 AM</td>
<td>133</td>
<td>17700</td>
<td>133.5</td>
<td>3.5</td>
<td>165</td>
<td>10.5</td>
</tr>
</tbody>
</table>
JR II C Samplers on 2, 5, and 11 km arcs

Azimuth of grid centerline: 345 deg
JR II Trial 2, 4.3 sec after the release starts
Part 1 of paper – Plots of C and Cu/Q versus distance x

- C is arc max 1-3 s average concentration; u is 2 m wind speed, Q is mass emission rate

- For emergency response guidance, a plot of C vs x combined for all release trials shows what to expect from release of 1 to 20 tons of chlorine

- Dimensional analysis should allow scatter to be reduced. Thus Cu/Q vs x.

- Fit line to observed Cu/Q vs x plot. It is found that Cu/Q is proportional to $x^{-5/3}$
Arc max C (in ppm) versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 – 9)

The straight line represents the -5/3 power law that best fits the max C point at the various x
Arc max Cu/Q versus x for Lyme Bay (LB), Jack Rabbit I (JR I), and Jack Rabbit II (Trials 1 – 9)

The straight line represents the relation \(\frac{Cu}{Q} = 8.5x^{-5/3} \), where Cu/Q has units \(m^{-2} \) and x has units m
Comments on Plot of Cu/Q vs x

• Normalization with Q/u brought the Lyme Bay, JR I and JR II 2016 points closer together (reduced the scatter seen in the C vs x plot)

• However, the JR II 2015 points (where there was a mock urban obstacle array at x < 100 m) were not moved much closer to the others and now are the “low values” on the plots

• The mock urban obstacles were seen to visibly enhance mixing and thus there may be an “initial mixing” effect that reduces concentrations over the whole sampling array
Part 2 of paper - Vertical dense jet in Trial 8 (hole at top of tank)

• The dense jet rises up about 40 m (plume centroid height), then touches down to the ground at a distance of about 60 m

• Compare maximum rise and touchdown distance with Hoot et al (1973) analytical formulas
Trial 8 dense plume about 30 s after release. Distance from the source to the red obstacle is about 85 m
Hoot, Meroney, and Peterka (1973)

Analyzed dense plume observations from many experiments in their wind tunnel. Came up with simple analytical formulas based on fundamental science

Plume rise Δh above source:

$$\frac{\Delta h}{2R_o} = 1.32 \left(\frac{w_o}{u} \right)^{1/3} \left(\frac{\rho_o}{\rho_a} \right) \left(\frac{w_o^2}{2R_o g'} \right)^{1/3}$$

where $g' = g(\rho_o - \rho_a)/\rho_o$; g is acceleration of gravity, ρ_a is ambient air density, u is wind speed, and ρ_o, R_o, and w_o are initial plume density, radius and vertical velocity after depressurization.
Plume touchdown distance x_g downwind:

$$\frac{x_g}{2R_o} = \frac{w_0 u}{(2R_o g')} + 0.56\left\{\left(\frac{\Delta h}{2R_o}\right)^3 \times \left((2 + \frac{h_s}{\Delta h})^3 - 1\right) \frac{u^3}{(2R_0 w_0 g'_a)}\right\}^{1/2}$$

where $g'_a = g(\rho_0 - \rho_a)/\rho_a$ and h_s is elevation of the stack or vent opening above the ground.
Inputs to Hoot et al. formula

• $Q = 79 \text{ kg/s}$

• $T = -34 \degree C$ (chlorine boiling point)

• 20% of mass released flashes (to gas). The rest is small aerosol drops. Assume effective initial density ρ_o is 12.5 kg/m3.

• Sensitivity study with initial vertical velocity w_o of 206 m/s (sonic) and 50 m/s. These imply initial radius R_o of 0.1 and 0.2 m.
Results of Hoot et al. formula

• For initial vertical velocity w_o of 206 m/s (sonic) and initial radius R_o of 0.1 m, plume rise Δh is 92 m and touchdown distance x_g is 100 m

• For initial vertical velocity w_o of 50 m/s (sonic) and initial radius R_o of 0.2 m, plume rise Δh is 36 m and touchdown distance x_g is 39 m

• These two predictions roughly bracket the observed values
Conclusions

• The two types of initial analysis described above demonstrate that the JR II data follow expected scientific relations regarding variations of concentrations with downwind distance, and rise of dense plumes.

• As with all analysis of environmental data, there is much scatter.