Impact of field biomass burning on local pollution and long-range transport of PM$_{2.5}$ in Northeast Asia in autumn 2014

Katsushige Uranishi1,*, Fumikazu Ikemori2, Hikari Shimadera1, Akira Kondo1 and Seiji Sugata3

1Graduate School of Engineering, Osaka University, Suita, Japan

2Nagoya City Institute for Environmental Sciences, Nagoya, Japan

3National Institute for Environmental Studies, Tsukuba, Japan
Outline

- Background

- Methods
 - Air Quality Model (WRF-CMAQ) Settings
 - Brute-force method for estimation of PM$_{2.5}$ source contribution

- Results
 - *Local pollution from BB*: Performance for Simulating PM$_{2.5}$ in China
 - *Long-range transport from BB*: Comparison of the two models (PMF vs. CMAQ/BFM)

- Conclusion
Background

- Biomass burning (BB) emission is highly uncertain for Air Quality Models (AQM)
- Long-range transport of BB pollutants in Japan remains unknown
- Current AQMs cannot sufficiently reproduce PM$_{2.5}$ in Japan

The impact of BB on local pollution and long-range transport of PM$_{2.5}$ was evaluated with CMAQ and PMF

- **Target episode**
 - Autumn (10/20 – 11/9) in 2014 in Northeast Asia
 - Long-range transport of BB pollutants in Noto peninsula in Japan was observed and analyzed by Positive Matrix Factorization (PMF)*

Ikemori et al. 2017: The 31th annual meeting of Tokai-Kinki-Hokuriku branch of the Japan Environmental Laboratory Association (JELA), Fukui (in Japanese).
Simulation domains

- East Asia (D1): 45km grid, 107 x 107 (CMAQ)
- Japan (D2): 15km grid, 132 x 126 (CMAQ)
- Surface to 100hPa (34 layers, 1st mid layer height ≈ 26m)

Numerous fire spots are found in Northeast China.
AQM (WRF/CMAQ) configuration

- **Simulation period:** Jan. 2014 to Dec. 2014 (Target period: **20 Oct. ~ 9 Nov.**)

<table>
<thead>
<tr>
<th>Component</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRF v3.8.1</td>
<td>Geography Data: USGS (30sec)</td>
</tr>
<tr>
<td></td>
<td>Analysis Data: JMA MSM-GPV (0.125x0.1deg, 3hr), NCEP FNL (1deg, 6hr),</td>
</tr>
<tr>
<td></td>
<td>NCEP/NOAA RTG_SST_HR (1/12deg, daily)</td>
</tr>
<tr>
<td></td>
<td>Physics Option: Kain-Fritsch, WSM6, YSU PBL, Noah LSM, Dudhia(SW, LW),</td>
</tr>
<tr>
<td></td>
<td>FDDA: $G_t, q, uv = 3.0 \times 10^{-4}$ s$^{-1}$</td>
</tr>
<tr>
<td>CMAQ v5.0.2</td>
<td>Meteorology Processor: MCIP v4.3</td>
</tr>
<tr>
<td></td>
<td>Initial & Boundary: Default</td>
</tr>
<tr>
<td></td>
<td>Emission Data: Asia: HTAPv2(2010), Japan: EAGrid2010 & JEI-DB(Vehicle) &</td>
</tr>
<tr>
<td></td>
<td>OPRF2010(Ship), Biogenic: MEGANv2.04, Biomass burning: FINN v1.5, Volcano:</td>
</tr>
<tr>
<td></td>
<td>JMA & Aerocom</td>
</tr>
<tr>
<td></td>
<td>Advection, Diffusion: Yamartino/WRF-based scheme, Multiscale/ACM2</td>
</tr>
<tr>
<td></td>
<td>Chemistry Option: SAPRC07 & AERO6 with Aqueous chemistry</td>
</tr>
</tbody>
</table>

WRF-CMAQ

- **Weather Research and Forecasting model**
- **Community Multiscale Air Quality model**
Brute-force method (BFM)

CMAQ with Brute-force method (CMAQ/BFM)

- Base: Baseline case
- noBB: BB emission set to be zero

\[C_{BB} = \text{base} - \text{noBB} \]

: Contribution of Long-range transport from BB on Noto peninsula
Simulation Case

- Target Area: BB (Fire spot) hotspot: **Northeast China 17 sites**
 - Downwind area: **Noto peninsula in Japan**
- BB emission:
 1. Baseline case
 2. BB emission × 5 (FINN05)
Three cases of simulations were implemented for CMAQ/BFM-estimated BB contribution.

- Base, FINN05 (x5 boosted BB emis.), noFINN (no BB emis)

1. AQMs performance with Air quality data of China was evaluated for a local pollution from BB

2. PMF-estimated BB contributions in Japan (Ikemori et al., 2017) was compared with CMAQ/BFM-estimated BB contributions for a long-range transport from BB

Ikemori et al. 2017: The 31th annual meeting of Tokai-Kinki-Hokuriku branch of the Japan Environmental Laboratory Association (JELA), Fukui (in Japanese).
Three cases of AQMs were implemented for CMAQ/BFM-estimated BB contribution.

- Base, FINN05 (x5 boosted BB emis.), noFINN (no BB emis)

1. AQMs performance with Air quality data of China was evaluated for a local pollution from BB

2. PMF-estimated BB contributions in Japan (Ikemori et al., 2017) was compared with CMAQ/BFM-estimated BB contributions for a long-range transport from BB

Ikemori et al. 2017: The 31th annual meeting of Tokai-Kinki-Hokuriku branch of the Japan Environmental Laboratory Association (JELA), Fukui (in Japanese).
Large underestimation was revealed in Northeast China during the last 10 days of October.

FINN05: Boosted BB case showed favorable performance.

Underestimation of BB emission may be implied.
Model performance in China during 20 Oct. – 9 Nov.

- **Base**: Large underestimation was revealed in Northeast China during the target period.
- **FINN05**: Boosted BB case showed favorable performance.
 - IA for Northeast 17 sites = 0.73 (vs. 0.55 in Base case)
 - IA and mean concentration for major cities were almost same.

- Underestimation of BB emission was also illustrated.
Three cases of AQMs were implemented for CMAQ/BFM-estimated BB contribution.

- Base, FINN05 (x5 boosted BB emissions), noFINN (no BB emissions)

1. AQMs performance with Air quality data of China was evaluated for a local pollution from BB

2. PMF-estimated BB contributions in Japan (Ikemori et al., 2017) was compared with CMAQ/BFM-estimated BB contributions for a long-range transport from BB

Ikemori et al. 2017: The 31th annual meeting of Tokai-Kinki-Hokuriku branch of the Japan Environmental Laboratory Association (JELA), Fukui (in Japanese).
Comparison of the two models (PMF and CMAQ/BFM): 1

PMF identified **clearly high BB contributions** in Noto peninsula during the 3 days (**27 to 29 Oct.**).
BB contribution by CMAQ/BFM in Base case was underestimated.
Comparison of the two models (PMF and CMAQ/BFM): 3

- CMAQ/BFM in boosted BB case (FINN05) produced better BB contribution harmonized with PMF
BB pollutants were directly transported to Wajima from Northeast China during 27–29 Oct.
Conclusion

<Local pollution>

1. Five times boosted BB suggests substantial improvement of PM$_{2.5}$ simulation in autumn in Northeast Asia.

<Long-range transport>

2. Comparison between PMF and CMAQ/BFM-estimated contributions implies BB emission was underestimated.

The comparison approach by using PMF and CMAQ/BFM allows us to illustrate that a boosted BB emission is preferable in this study.
Acknowledgement

- This research was conducted as Type II joint research of the National Institute for Environmental Studies (NIES) and environmental research institutes of local government in Japan.
- The computational resources were provided by NIES.
- We acknowledged the use of data and imagery from LANCE FIRMS operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ.

Thank you for your attention!!
BB profile was identified by tracer chemicals (K\(^+\), OC, EC, Levoglucosan) as well as concentration profile.

Other PMF factors

- **SS**: sulfate aerosol
- **Oil**: oil combustion
- **RT**: road transportation
- **Ind**: industrial dust
- **NS, CIS**: nitrate aerosol etc
- **Sea, Dust**: sea salt particle and dust
WRF model performance of at Wajima
輪島における後方流跡線（毎00, 06, 12, 18時、48時間、到着高度1,500m）
Beijing以外、FINNの濃度を変化させても10/20～11/9の間は大差なし

Chengdu以外は再現性は良好
※Chengduは2013年のINTEX-Bによる計算でも再現性は不良
中国国内の地点ごとの再現性（D1：Heilongjiang省）

- Baseケースは過小評価傾向が強くFINN排出量不足を裏付け
- 野焼き発生地点付近では、PBL均等割した場合、地表面濃度が低めに出る
中国国内の地点ごとの再現性（D1：Jilin省）

- Baseケースは過小評価傾向が強い（Heilongjiangと同傾向）
- 野焼き発生地点付近では、PBL均等割した場合、地表面濃度が低めに算出
中国国内の地点ごとの再現性（D1：Liaoning省）

- Baseケースは過小評価傾向が強い（Heilongjiangと同傾向）
- 10/31, 11/1のPM_{2.5}濃度が大きくかい離（Shenyang, Fushun）

⇒ バイオマス燃焼とは別要因？
越境汚染の再現性不良の考察 1 (D2: 日平均降水量、湿性沈着量)
越境汚染の再現性不良の考察2（D2: FINN感度解析、湿性沈着量）

湿性沈着量の不足により能登半島は汚染？