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Introduction
Evaluation of urban air quality: measurements

Accurate data

x Heterogeneous spatial distribution
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Introduction
Evaluation of urban air quality: modelling

Fine spatial resolution

Forecast

Scenario studies

High number of species

x High uncertainties
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Introduction
Evaluation of urban air quality: data assimilation

Background Measurements Analysis

Data assimilation (DA): combination of measurements and modelled data to
determine the best estimate of the system state

• 𝐱𝐛: background (n)
• 𝐲: observations (m)
• 𝐱𝐚: analysis (n)
• 𝐇: observation operator (m x n)
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DATA ASSIMILATION
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b) After assimilation

Data assimilation
Bias Adjustment Technique (BAT)

a) Before assimilation
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• Analysis: 𝐱𝐚 = α𝐱𝐛

• Correction coefficient: α =
 i
m yi

 i
m xi

b

with:

• xi
b: background at point pi

• yi: measurement at point pi
• m: number of observations



Data assimilation
Best Linear Unbiased Estimator (BLUE)

• Analysis: 𝐱𝐚 = 𝐱𝐛 + 𝐊 𝐲 − 𝐇𝐱𝐛

• Kalman gain: 𝐊 = 𝐁𝐇𝑻 𝐇𝐁𝐇𝑻 + 𝐑
−1

with:

• 𝐊: Kalman gain

• 𝐑: observation error covariance matrix

• 𝐁: background error covariance matrix

• Modelling of matrix 𝐑:

• 𝐑 = diag σ1
2, σ2

2, … , σm
2

• 1,96σi = δi yi

with:
o  yi: mean measurement at point pi
o δi: uncertainty at the point pi
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Data assimilation
Best Linear Unbiased Estimator (BLUE)

• Modelling of matrix 𝐁:

• Assumption: background errors at points pi and pj are more correlated
when these points are impacted by the same events

• Bij = γ σi
2,bσj

2,bρ0exp
ρij
b−1

Lρ

with:

o σi
2,b: background variance at point pi

o ρij
b: correlation coefficient of the background at points pi and pj

o γ: adjustment coefficient

o ρ0: characteristic correlation coefficient

o Lρ: characteristic correlation distance

• γ, ρ0 and Lρ are estimated with the 𝜒2 diagnosis and by minimising the
RMSE after cross-validation

9



Data assimilation
Source Apportionment Least Square (SALS)

a) Before assimilationb) After assimilation
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• Assumption: modelling errors are
mainly due to errors on emissions
estimates

• Analysis: 𝐱𝐚 =  g
G β𝑔 𝐱𝐠

𝐛

with:
• 𝐱𝐠

𝐛: background of the source group g

• β𝑔: modulation coefficient of the source
group g

• G: number of source groups

• The β𝑔 coefficients are estimated by
minimising the cost function J:

• J(β1, β2, … , βG) = 𝐲 − 𝐱𝐚 𝑇 𝐲 − 𝐱𝐚



CASE STUDY
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Case study
Description

• Goal: air quality evaluation on the Île-de-France area

• Scenario:

• From 01/12/16 to 30/06/17

• Pollutant: NO2

• 35 monitoring stations

• 3 groups for the SALS: 

• Traffic

• Other emissions

• Background concentration

Domain of the case study
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Case study
Statistical indices

b a

c
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Statistical
indices

Expression
Optimal 

value

Bias 𝐱𝐦 −  𝐲 0

RMSE 𝐱𝐦 − 𝐲 𝟐 0

Corr
𝐱𝐦 − 𝐱𝐦 𝐲 −  𝐲

𝐱𝐦 − 𝐱𝐦 𝟐 𝐲 −  𝐲 𝟐
1

POD
a

a + c
1

FAR
b

a + b
0

𝐱𝐦: estimates; 𝐲: observations

The analysis is estimated with the leave-one-out cross-validation



Case study
Results: Bias, RMSE and Corr

• Mixed results for the Bias

• Improvement of the RMSE (≈ 20 %) and Corr (≈ 10 %)

• The BLUE method leads to the best results
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Case study
Results: POD and FAR

• Improvement of high concentration (> 200 µg.m-3) detection with the BLUE
method

• Increase of the POD from 36 % to 67 % (except for the background stations)

• Decrease of the FAR from 30 % to 36 %

• However, a significant number of high concentrations remain undetected
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Case study
Results: hourly concentrations (A1)
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Case study
Results: hourly concentrations (RN2)
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Case study
Results: concentration fields (0h 02/12/2016)

Background BLUE

• The BLUE method can lead to concentration fields which are not physically
consistent because:
• This method is a statistical method which is not governed by physical laws

• This method is an interpolation of the innovation

• The matrix 𝐁 has a monotonous behavior regardless of the innovation
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CONCLUSION
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Conclusions

• Data assimilation:

• Global improvement of the statistical indices

• Sometimes an improvement of the high concentration detection

• Occasionally the estimates are worse after DA

• Performances of the 3 DA methods:

• Globally the BLUE method leads to the best results

• The best estimates are not always associated to the same method temporally and
spatially

• The BLUE method can lead to concentration fields which are not physically
consistent
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Thank you for your attention 

Questions ?
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