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Abstract: Linear inverse dispersion modelling, in particular from a single point source, is a maturing field where 
least square optimisation methods as well as Bayesian approaches have been adapted to solve the problem. In many 
studies, however, the setting is both oversimplified (flat terrain, Gaussian plume dispersion models) and the detector 
data generated synthetically. In the present study we bring linear inverse modelling to an urban environment (there 

are up to 14 buildings in the town studied) and we use detector signals from MODITIC wind tunnel experiments of 
the same configuration. We employ two different methods, renormalisation (Issartel et al, 2012) and a Bayesian 
framework, to solve the resulting inverse problem. We compare and contrast the two different methods and their 
results. Both methods rely on having adjoint functions for computational efficiency. In this case the adjoint fields are 
RANS CFD-fields. 
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INTRODUCTION 
Over the years atmospheric dispersion models have been developed and refined to be able to cope with 

dispersal problems of varying, or rather increasing, complexity: the original problems were usually 

involving a hazardous substance that was dispersed linearly by a given meteorology over flat terrain while 

today the state-of-the-art cases, like those studied in the MODITIC project, handle nonlinear dispersal in 

built up environments. Being able to predict where a known release of a hazardous substance is carried by 

the wind field in order to calculate risk areas, estimate casualties and devising mitigating actions is 

important. These are questions that typically arise before an event has taken place, or, possibly during an 

event if the source of the release is known. Often the source is unknown, indeed networks of sensors are 

employed around critical infrastructure or soft targets to give an early warning of a developing event. 

That raises the natural question: can the knowledge of how a hazardous substance disperse through the 

atmosphere combined with the information given by the detectors allow us to deduce where the hazardous 
substance was released, i.e. determine the source. Enter inverse dispersion modelling. In this talk we will 

use two different inverse modelling techniques and apply them to a linear inverse problem set in a built 

up environment. We verify the methods for synthetic sensor data, showing what accuracy we can expect 

from the methods, and then apply the methods to sensor data generated in wind tunnel experiments. 

 

EXPERIMENTAL SET-UP 

We study two urban environments of increasing complexity: the simple array with 4 equal sized 

buildings, and a complex array with 14 buildings of varying sizes. 

 

Simple array 

The dimensions of the simple array, with the positions of the synchronized detectors we use for 

backtracking is shown in Figure 1. 



 
Figure 1. Sensors network (A, B, C arrangement) for the simple array cases. In each scenario 4 synchronized 

detectors are used to measure the concentration of the released gas. The dectors are located at the positions stated 

under A, B and C respectively. 
 

The wind direction in the wind tunnel experiments is aligned with the x-axis in Figure 1, and as shown in 

the figure the simple array may aligned at two different angles: we denote the alignment in the upper pane 

as “0 degrees” and the alignment in the lower pane as “45 degrees”. In each scenario four synchronized 
detectors were used, hence the reference 4 FFID in Figure 1, and we chose three different sets of locations 

for these detectors: we refer to these as case A, B and C. In addition to this two different source locations 

were available: these we denote S1 and S2, both S1 and S2 (at the origin) are located at 8H upwind (=-

0.88m) in the x direction, but S1 is shifted off the x-axis by 1.5H (=0.165m) in the +y direction. The 

location of S2 was chosen to be the origin of the coordinate system. The diameter of the sources is 0.1m 

(to be compared to building height and sides of H=0.11m). A constant release rate of 50l/min=8.33e-4 

m3/s was used in all scenarios. 

 

Complex array 

In the complex array there more buildings present and there is less symmetry. The configuration also 

opens up for a larger number of sensible detector locations, however, still only 4 synchronized detectors 

were used in these scenarios. For the complex array we chose five different sets of detector 
configurations: these are denoted case A through to E, and these are shown together with the geometry of 

the complex array in Figure 2. Note that some detectors are located on the roof tops (cases A and C) and 

other are inside the street canyons (cases B, D and E). 

 

 
Figure 2: Configuration of the complex array. In each scenario, denoted case A through to E, 4 synchronized 

detectors were used to measure the concentration of the released gas. Note that some detectors are located at the roof 

of the buildings. Two different source locations were used, denoted S1 and S2. (There is a third source S3 indicated 
in the figure, but it was not used for inverse modelling). 

 

Two different source locations were used S1 and S2. The diameter of the sources is 0.1m. The source S1 

is defined to be at the origin (see Figure 2) while S2 is located upwind at x=-8H=-0.88m and y=0. S1 and 



S2 are both located on the ground. As for the empty and complex array the source strength is 
50l/min=8.33e-4m3/s. 

 

For full details on the wind tunnel experiments that were conducted we refer to (Robins et al, 2016). 

 

INVERSE MODELLING METHODS 

There are many inverse modelling techniques for atmospheric dispersion problems, but in general there 

are two main classes of such methods in use: in the first one the inverse problem is considered to be a 

probabilistic problem and Bayes theorem is used to deduce information about the source, in the second 

one the problem is viewed as a deterministic problem and the source is solved for by using some 

optimality principle (e.g. least squares). Common for both of these classes of methods is that they rely on 

being able to link a hypothetical source to its sensor response (a source-sensor relationship). This source-
sensor relationship is readily given by the atmospheric dispersion model if it was not for the problem of 

computational cost. For each hypothetical source the atmospheric dispersion model must be used to 

establish the desired source-sensor relationship, for a Gaussian model on flat terrain this could be doable, 

but in the case of complex geometry and CFD-models it is not feasible. Thus a method called adjoint 

plumes is used. This method initially requires a more involved mathematical derivation, but once the 

adjoint model is found and it only have to be solved once for each detector to establish the source-sensor 

relationship. As part of the MODITIC project it was shown that neutral gas release for the simple and 

complex array are self-adjoint (Brännvall, 2015). 

 

Bayesian method 

In the Bayesian approach to the inverse problem the source is estimated from the a posteriori probability 

distribution function which is obtained by calculating a likelihood function and weighing it with any a 
priori information that one has at hand (see e.g. (Stuart, 2010) for an introduction to general Bayesian 

inverse problems, and (Franklin, 1970) for an early reference). Let u be the sought input (the source), 

and y the observed sensor data, then the posterior distribution is given by 
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where )(uP is the prior distribution, )|( uyP is the likelihood and )(yP is the evidence – the latter is 

only normalising the distribution and is not required for sampling the posterior distribution. This method 

avoids the pitfalls of ill-conditioning which are often associated with directly inverted problems and adds 
the benefit of allowing uncertainties in models and measurements to be handled in a tractable fashion. 

 

Renormalisation 

Renormalization theory is a theory for data assimilation that allows reconstructing some estimated 

sources (Turbelin et al, 2014). It works in linear situations, where the measurements depend linearly on 

the source that is to be estimated. The estimated source is then a linear function of the measures, and no 

prior data has to be incorporated to the inputs: the experimenter does not have to guess what could be the 

source, nor the error of the model that has been used. The only inputs are the measurements µ and the 

adjoint function a(x) (i.e., the values of the measurements associated to point sources). 

To compute these adjoint functions, it is helpful to first compute retro-plumes and to make a post-

treatment to eventually add some information: if the source is known to be on the ground, only the ground 

value of the retro-plumes is the adjoint; if the source is known to be stationary, the mean value (in time) 
of the retro-plumes is the adjoint. 

From these adjoint functions, a visibility function is computed (Turbelin et al, 2014). The estimated 

source is then a linear combination of the ratios of the adjoint functions over the visibility function. To 

optimize the choice of visibility function )(x , the entropy lost (or information gained) by the action of 

measuring is maximized. The optimal visibility function obeys the following equation: 
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where )(xa is the adjoint function. Amongst the properties of the visibility function, an important one is 

that when the real source is a single point source, then the estimated source is maximal at the point of the 

real source. This allows identifying point releases in the presence of detection and model errors (Issartel 

et al, 2012). To estimate the intensity of the source q and its position (x,y), assuming that the source is a 

point source in the ground plane, that is the source )()(),(),,( 0000 yyxxqyxszyxs   is a 

point source at ),( 00 yx of intensity 0q , we minimize the distance between the given measurements 

 and the model predicted “measurements” )),(),...,,(()),,(),,,(( 000010 yxayxaqzyxazyxs n  in 

the renormalized norm induced by )(xH  i.e. we minimize 



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000 ,, yxq . The consequences of minimizing with respect to the renormalized norm is expanded on in 

(Issartel et al, 2012). 

 

RESULTS ON SYNTHETIC SENSOR DATA 
In order to verify that the inverse methods are working and to give us an idea of what to expect in terms 

of uncertainties for the Bayesian method we begin with studying the case where sensor measurements 

have been generated synthetically: the same dispersion model has been used (in forward mode) to 

simulate the concentrations at the sensor locations as been used to generate the adjoint plumes for inverse 

modelling. This approach eliminates the errors that would be induced by the fact that the model is a 

simplified description of the physics it is modelling. Two representative results are shown in Figure 3. In 

the figure, apart from the estimated source locations, the location of the sensors and the geometry, a 

visualisation of the posterior distribution are shown: it is plotted as a highest posterior density region 

(HPD) where the color scale shows the highest posterior density (HPD) credibility level. For example, a 

level curve in the yellow region bounds a HPD area containing almost 100% of the posterior probability 

mass, whereas a level curve in the blue region bounds a HPD area containing nearly 0% of the posterior 
probability mass. Hence 0% HPD credibility level represents the maximum posterior density, whereas 

100% HPD credibility level represents the minimum posterior density. 

  
Figure 3 Estimated sources using synthetically generated data. In the left pane the simple array at 45° with sensor 

configuration B (compare Figure 1) is shown, and in the right pane the complex array with sensor configuration B 
(compare Figure 2) is shown. In both panes the estimated source location using Bayes (regularised), pink dot, and the 

Renormalisation method, cyan dot, are shown as well as the true source location (red dot) – in both panes however 
the renormalized estimate coincides with the true source location hiding the red dot. 

 

RESULTS ON WIND TUNNEL DATA 

Having dealt with the case of synthetically generated measurements we now proceed to the case of 

estimating the source based on actual measurements in the wind tunnel. We stick to the same cases and 

configurations as shown in Figure 3 for easy comparison. See Figure 4 for the results. 



  
Figure 4 Estimated sources using wind tunnel measurements, same cases as in Figure 3. In both panes the estimated 
source location using Bayes (regularised), pink dot, and the Renormalisation method, cyan dot, are shown as well as 

the true source location (red dot). 

 

CONCLUSION 

Looking at Figure 3, where we used synthetically generated data and thus eliminated the error that any 

model/physics discrepancies would have induced, we conclude that the uncertainties for the Bayesian 

case are much larger in the wind direction (along the x-axis) compared to the resolution in the cross wind 

direction (y-direction). Studying the geometry of the visibility function )(x  underpinning the 

renormalization method we would conclude that the renormalization method suffers from the same 

feature: the error in source location is larger in the wind direction than in the cross wind direction. We 

also note that from an inverse modelling point of view the simple array is a misnomer: the simple array is 
a harder case. The reason for this is that the source is located relatively far upwind from the buildings, and 

then the symmetrically positioned buildings scramble the signal that is picked up by a sensor network 

located far downstream. The Bayesian methods struggles to pinpoint the true source location for wind 

tunnel measurements as well as synthetic data, even though the true source location is enclosed in the 

HPD-region with quite high confidence level. The renormalisation method is spot on for synthetic data, 

but is for some reason disturbed by the wind tunnel measurements. The complex array on the other hand 

is an easier case, the source is located closer to the buildings (which are not quite symmetric) and the 

sensors are located within the town. For this complex array case the renormalisation method works 

beautifully, and the Bayesian method is not far off. Overall we note that when the sensor network has 

good visibility (in terms of the visibility function )(x ) the renormalisation method works well. 
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