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Abstract: The U.S. Defense Threat Reduction Agency (DTRA) sponsored a two-year set of experiments, conducted 

in 2012 and 2013, that were designed and executed through a collaboration between the U.S. Army’s Edgewood 

Chemical and Biological Center (ECBC) and the Naval Medical Research Unit Dayton (NAMRU-D) to explore the 

effects of time-varying inhalation exposures of hydrogen cyanide (HCN) gas on rats. In this work, we explore the 

comparison between the observed lethality and the predicted lethality of the “toxic load” model of exposure. Our 

analysis confirms the conclusion published by the authors of the experiment that the casualties observed for exposures over 

the experiments’ full range of exposures from 2.3 to 30 minutes are not consistent with the predictions of toxic load-

based toxicity models. We also conclude that a single set of fitted parameters for the toxic load model (i.e., the toxic 

load exponent n, probit slope m, and median lethal exposure TL50) accurately models the single exposure experimental 

data across the experiments’ longer timescales of 10 to 30 minutes. However, we found that none of the toxic load 

models that we considered appear to fit the experimental data for the novel, time-varying exposures well, with the 

Average Concentration and Griffiths-Megson models providing the least inaccurate casualty predictions. 
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INTRODUCTION 

Toxic industrial chemicals and chemical warfare agents present an acute inhalation hazard to 

civilians and military personnel. An individual exposure to an airborne hazardous material  may be 

highly time-dependent due to the random effects of wind meandering and atmospheric  turbulence. 

Several toxicological models based on the “toxic load” model of exposure have been proposed to 

predict the casualties arising from time-dependent exposures to airborne hazardous materials, but 

none were developed using data from toxicological experiments that used time-varying exposure 

profiles. To explore this experimentally unexplored regime, the U.S. Army’s Edgewood Chemical 

and Biological Center (ECBC) and the Naval Medical Research Unit Dayton (NAMRU-D) 

performed a two-year set of experiments observing the lethality of time-varying exposures of 

hydrogen cyanide (HCN) gas on rats. 

 

ECBC/NAMRU-D EXPERIMENTAL DATA 

To determine the suitability of toxic load models, the U.S. Army’s Edgewood Chemical and  

Biological Center (ECBC) and the Naval Medical Research Unit Dayton (NAMRU-D) performed a 

two-year set of experiments. These experiments were designed to observe the lethality of hydrogen 

cyanide in a healthy population of male Sprague-Dawley rats. A group of ten rats are simultaneously 

exposed to the airborne toxin using a pressurized, nose-only inhalation apparatus (see Sweeney et al, 

2014 for details).  

 

The experimental setup allowed the concentration of the gas to be varied as a function of time; 

twenty-two separate exposure profiles were tested (eleven for each year or phase of the experiment). 

These exposure profiles were constructed to approximate square pulses of constant concentration 

(Sweeney et al, 2014 validates this idealization). The profiles can be grouped into three categories: a 

single square pulse, two square pulses with no time gap between them, and two square pulses  with a 



time gap between them when the rat is not exposed to any toxin. All exposure profiles are between 

2.3 to 30 minutes long. Each profile was tested a number of times with a unique concentration level, 

denoted as a trial. 

 

TOXIC LOAD MODELS 

Toxic load models define a quantity TL (toxic load) which captures the propensity of a population to suffer 

a physiological effect from exposure to a toxic chemical. For airborne exposures with a single constant 

exposure, the toxic load is defined as 

 

 𝑇𝐿 = 𝐶𝑛∆𝑡, (1) 

 

where C is the air concentration of toxin in the exposure, ∆t is the duration of the exposure, and n is the 

toxic load exponent, a positive number. The toxic load model holds that the susceptibility of a population, 

measured in fraction affected, is log-normally distributed with respect to toxic load. The toxic load 

corresponding to 50% of the population affected is defined as the median toxic load (denoted by TL50), 

and the slope of the cumulative distribution function at TL50 is the probit slope, denoted m. The following 

probit model defines the relationship between toxic load and toxic effects, 

 

 𝑃 = Φ(𝑚 log10 𝑇𝐿 − 𝑚 log10 𝑇𝐿50), (2) 

 

 Φ(𝑧) = [𝐸𝑟𝑓 (
𝑧

√2
) + 1] /2 . (3) 

Here P corresponds to the percent of a population to exhibit the response of interest (in this case rat 

lethality), log10 is the base 10 logarithm, Φ is the cumulative distribution function of the standard normal 

distribution, and Erf is the error function. Figure 1 portrays a generic plot of the toxic load model, with 

the physical significance of the parameters indicated. 

 

 

 
Figure 1. The relationship between toxic load and fraction dead (left) and probability density (right) for a 

population. The toxic load exponent n parameterizes the x-axis, weighing the relative importance of concentration 

and exposure time. The median toxic load TL50 captures the overall susceptibility of the population, while the 

probit slope m captures the variability of susceptibility in the population.  

 

 

 



The toxic load model was originally defined for single square pulse exposures (ten Berge, 1983). 

However, as the toxic load model is phenomenological, it is unclear how to extend toxic load to a given 

time varying exposure. Various extensions to the toxic load model have been proposed to capture time 

dependence: the Ten Berge model (4), the average concentration model (5), the peak concentration model 

(6), the concentration intensity model (7), and the Griffiths-Megson model (8). These models define the 

toxic load in terms of the time dependent concentration C(t) and the toxic load exponent n: 

 

 

   𝑇𝐿 =  ∫ 𝐶𝑛(𝑡) 𝑑𝑡    (Ten Berge)  (4) 

 

𝑇𝐿 = (
∫ 𝐶(𝑡)𝑑𝑡

Δ𝑡
)

𝑛

Δ𝑡 =  (𝐶(𝑡)̅̅ ̅̅ ̅̅ )
𝑛

Δ𝑡  (Average Concentration) (5) 

 

𝑇𝐿 = (
∫ 𝐶(𝑡)𝑑𝑡

sup {C(t)}
) sup {𝐶(𝑡)}𝑛  (Peak Concentration)  (6) 

 

𝑇𝐿 = (
(∫ 𝐶(𝑡)𝑑𝑡)

2−𝑛

(∫ 𝐶2(𝑡)𝑑𝑡)
1−𝑛)   (Concentration Intensity) (7) 

 

   𝑇𝐿 = (
∫ 𝐶(𝑡)𝑑𝑡

Δ𝑡𝐶>0
)

𝑛

Δ𝑡𝐶>0   (Griffiths-Megson) (8) 

 

 

The expressions for toxic load are understood to be defined only over the time interval between the onset 

and termination of chemical exposure. These expressions are well defined given a particular C(t), 

exposure duration ∆t, and toxic load exponent n. The different models generally produce different values 

of the toxic load and significantly different casualty predictions (Czech 2011).  However, in the case of 

constant exposures (C(t) = C), all the extensions are identical to the general toxic load model of 

Equation (1). 

 

CONSTANT-CONC. EXPOSURES: ESTIMATION OF TOXIC LOAD PARAMETERS 

In order to validate the proposed extensions of the toxic load model (Equations 4 – 8), we first fit the 

basic toxic load model described in Equation (1). Based upon our assessment of goodness of fit, we find 

that a toxic load model with parameters n = 1.36, TL50 = 5.41 x 104, and m = 6.17 well captures the 

lethality of HCN in a healthy population of male Sprague-Dawley rats resulting from constant 

concentration exposures of 10-30 minutes in duration. The details of the model fitting are described in a 

companion paper (Slawik, et al., 2016). We exclude exposures of shorter duration (2.3 and 5 minutes) 

because they fit the model poorly.  

 

TIME-VARYING EXPOSURES: VALIDATION OF TOXIC LOAD EXTENSIONS 

All five toxic load model extensions (Equations 4-8) can be shown to fit the 10-30 minute data poorly in 

plots of predicted versus observed casualties. The Griffiths-Megson and Average Concentration models 

(equations (8) and (4) respectively, provide the best overall casualty predictions. Figure 1 depicts the 

accuracy of the Average Concentration model in predicting the 10 and 30 minute time-varying exposure 

data with and without a time gap.  



 

Figure 2. Predicted versus observed fractional casualties for time-varying 10 and 30 minute duration profiles using 

the Average Concentration model, equation (4). The time-constant 10-30 minute duration data are used to fit the toxic 

load parameters to generate predicted values. Each dot denotes a specific trial (10 rats). Color and shading style 

denotes each profile (Pf.) and phase or year of experiment (Ph.). For the 10 minute profiles, casualties are slightly 

over-predicted, and for the 30 minute profiles, there is scatter in the casualty comparisons. For time-varying 

exposures without a gap (left column), the Griffiths-Megson model, equation (8), is identical to Average 

Concentration model. 

 

QUANTIFYING BIAS AND SCATTER 

The accuracy of the toxic load model extensions can be assessed by comparing model predictions to 

observations. Careful inspection of the Average Concentration model’s predictions in Figure 2 on a 

profile by profile basis reveals either over-prediction or under prediction bias for many profiles, and the 

scatter of the data points is easily visible. The average absolute error in casualty prediction is 1.6 rats, or 

about 16% of the total sample size. Since only ten rats are exposed for each trial, sampling error can be 

significant. Taking the predicted casualties as our starting point, we can determine whether the observed 

difference between the model and the data is larger than that expected to arise by chance alone due to 

sampling. 

 

We choose the mean square error (MSE) statistic to quantify scatter and the absolute value of mean error 

(AME) statistic to quantify bias (ie. a tendency to over-predict or under-predict). If the rat population 

sampled in each trial is assumed to be perfectly described by the toxic load model extension, the 

observed casualties will be distributed according to a binomial distribution centered at the predicted 

number of casualties. We can capture the expected distribution of a statistic due to sampling variability 

alone using Monte Carlo simulations to sample the binomial distribution. If the observed MSE and 

AME for each profile is uncharacteristically large, then the toxic load model extension in question 

provides poor predictions. Tables 1 and 2 compare the performance of the five tested toxic load model 

extensions using the MSE and AME statistics respectively. Performance is measured via the p-value (the 

probability of obtaining as extreme a value) estimated by Monte Carlo simulation with 10,000 trials. If 



the agreement between the model predictions and observations is perfect, the p-values should be evenly 

distributed between 0 and 1; clustering of p-values near 1 denotes poor predictions. We choose an error 

in the 90th percentile to denote a poor fit.  Each combination of exposure profile and toxic load model 

extension is marked in red or green to denote “bad” or “good” fits respectively. 

 

Table 1. Variance of Predictions: p-values of mean squared error statistic 

Profile, Year  Profile 

type 

Duration Griffiths- 

Megson 

p-values 

Ave. 

Conc. 

p-values 

Ten- 

Berge 

p-values 

Conc. 

Int. 

p-values 

Peak 

Conc. 

p-values 

Prof. 2, 2013 No gap 10 mins 0.3728 0.3728 0.9723 0.9948 0.9998 

Prof 3, 2013  No gap 10 mins 0.3990 0.3990 0.8206 0.8990 0.9793 

Prof. 7, 2012 No gap 30 mins 0.9746 0.9746 0.9918 0.9952 0.9997 

Prof 8, 2012 No gap 30 mins 0.9934 0.9934 0.9938 0.9968 0.9996 

Prof 7, 2013 No gap 30 mins 0.9800 0.9800 0.9993 0.9996 1.0000 

Prof. 8, 2013 No gap 30 mins 0.4159 0.4159 0.4871 0.5881 0.8043 

Prof. 4, 2013 Gap 10 mins 1.0000 0.9998 1.0000 1.0000 1.0000 

Prof. 5, 2013 Gap 10 mins 0.8495 0.1781 0.9964 0.9989 0.9998 

Prof. 9, 2012 Gap 30 mins 0.5639 0.8070 0.6333 0.6776 0.8840 

Prof. 10, 2012 Gap 30 mins 0.9302 0.9260 0.9997 1.0000 1.0000 

Prof. 9, 2013 Gap 30 mins 0.8851 0.9845 0.9647 0.9804 0.9958 

Prof. 10, 2013 Gap 30 mins 0.9656 0.9989 0.8944 0.8904 0.9203 

 

Table 2. Bias of Predictions: p-values of absolute mean error statistic 

Profile, Year Profile 

type 

Duration Griffiths- 

Megson 

p-values 

Ave. 

Conc. 

p-values 

Ten- 

Berge 

p-values 

Conc. 

Int. 

p-values 

Peak 

Conc. 

p-values 

Prof. 2, 2013 No gap 10 mins 0.6882 0.6882 0.9964 0.9997 1.0000 

Prof. 3, 2013 No gap 10 mins 0.4002 0.4002 0.9135 0.9681 0.9964 

Prof. 7, 2012 No gap 30 mins 0.9864 0.9864 0.9979 0.9990 1.0000 

Prof. 8, 2012 No gap 30 mins 0.9211 0.9211 0.3071 0.5740 0.9791 

Prof. 7, 2013 No gap 30 mins 0.5429 0.5429 0.9924 0.9986 0.9999 

Prof. 8, 2013 No gap 30 mins 0.4322 0.4322 0.6243 0.7895 0.9328 

Prof. 4, 2013 Gap 10 mins 0.9314 0.2194 1.0000 1.0000 1.0000 

Prof. 5, 2013 Gap 10 mins 0.9639 0.2483 0.9996 0.9999 1.0000 

Prof. 9, 2012 Gap 30 mins 0.4431 0.9009 0.6398 0.7195 0.9513 

Prof. 10, 2012 Gap 30 mins 0.8280 0.5758 0.9999 1.0000 1.0000 

Prof. 9, 2013 Gap 30 mins 0.0179 0.9852 0.9161 0.9460 0.9972 

Prof. 10, 2013 Gap 30 mins 0.9363 1.0000 0.0301 0.2928 0.7334 

 

Table 3 summarizes the results of the Monte Carlo simulations, noting the fraction of profiles without 

uncommonly large scatter, bias, and scatter or bias. The Griffiths-Megson and Average Concentration 

model provide the least inaccurate predictions, but their predictions are still poor, failing over half of the 

profiles tested. The peak concentration model clearly performs poorly, and the commonly used ten-Berge 

model provides accurate predictions for only a quarter of the profiles. 

 

 

Table 3. Toxic load model extensions’ overall performance in predicting casualties 

Metric Griffiths-

Megson 

Average 

Conc. 

Ten-Berge Conc. 

Intensity 

Peak Conc. 

# profiles with 

acceptable scatter 

6 of 12 5 of 12 4 of 12 4 of 12 2 of 12 

# profiles with 

acceptable bias 

7 of 12 7 of 12 4 of 12 4 of 12 1 of 12 

# profiles with 

acceptable bias 

and scatter 

5 of 12 4 of 12 3 of 12 3 of 12 0 of 12 



CONCLUSIONS 

The disagreement between the toxic load model predictions and the 10-30 minuet exposure data is much 

higher than that expected due to sampling error alone. Systematic experimental error or some 

physiological process in the rat not described by the models could explain this disagreement. The failure 

of these models to accurately describe the time-varying exposure data is troubling considering the 

importance modelling casualties arising from time-varying exposures in real-world airborne hazardous 

release incidents.  
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